Top ▲
Gene and Protein Information | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | - | 729 | 12q14.2 | TBK1 | TANK binding kinase 1 | |
Mouse | - | 729 | 10 D2 | Tbk1 | TANK-binding kinase 1 | |
Rat | - | 729 | 7 q22 | Tbk1 | TANK-binding kinase 1 |
Previous and Unofficial Names |
NAK | TANK-binding kinase 1 |
Database Links | |
Alphafold | Q9UHD2 (Hs), Q9WUN2 (Mm) |
BRENDA | 2.7.11.1 |
ChEMBL Target | CHEMBL5408 (Hs), CHEMBL2189160 (Mm) |
Ensembl Gene | ENSG00000183735 (Hs), ENSMUSG00000020115 (Mm), ENSRNOG00000005528 (Rn) |
Entrez Gene | 29110 (Hs), 56480 (Mm), 299827 (Rn) |
Human Protein Atlas | ENSG00000183735 (Hs) |
KEGG Enzyme | 2.7.11.1 |
KEGG Gene | hsa:29110 (Hs), mmu:56480 (Mm), rno:299827 (Rn) |
OMIM | 604834 (Hs) |
Orphanet | ORPHA318865 (Hs) |
Pharos | Q9UHD2 (Hs) |
RefSeq Nucleotide | NM_013254 (Hs), NM_019786 (Mm), NM_001106786 (Rn) |
RefSeq Protein | NP_037386 (Hs), NP_062760 (Mm), NP_001100256 (Rn) |
SynPHARM | 81113 (in complex with MRT67307) |
UniProtKB | Q9UHD2 (Hs), Q9WUN2 (Mm) |
Wikipedia | TBK1 (Hs) |
Selected 3D Structures | |||||||||||
|
Enzyme Reaction | ||||
|
Download all structure-activity data for this target as a CSV file
Inhibitors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
DiscoveRx KINOMEscan® screen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A screen of 72 inhibitors against 456 human kinases. Quantitative data were derived using DiscoveRx KINOMEscan® platform. http://www.discoverx.com/services/drug-discovery-development-services/kinase-profiling/kinomescan Reference: 8,28 |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Target used in screen: TBK1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Displaying the top 10 most potent ligands View all ligands in screen » |
EMD Millipore KinaseProfilerTM screen/Reaction Biology Kinase HotspotSM screen | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A screen profiling 158 kinase inhibitors (Calbiochem Protein Kinase Inhibitor Library I and II, catalogue numbers 539744 and 539745) for their inhibitory activity at 1µM and 10µM against 234 human recombinant kinases using the EMD Millipore KinaseProfilerTM service. A screen profiling the inhibitory activity of 178 commercially available kinase inhibitors at 0.5µM against a panel of 300 recombinant protein kinases using the Reaction Biology Corporation Kinase HotspotSM platform. http://www.millipore.com/techpublications/tech1/pf3036 http://www.reactionbiology.com/webapps/main/pages/kinase.aspx Reference: 1,12 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Target used in screen: TBK1/TBK1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Displaying the top 10 most potent ligands View all ligands in screen » |
Immunopharmacology Comments |
TBK1 belongs to the IKK-kinase family of enzymes. It is a ubiquitously expressed serine/threonine protein kinase, and constitutes a key regulatory node for several signaling pathways involved in the innate immune response that lead to induction of type I interferons. Several classes of innate sensors including the TLRs and retinoic acid-inducible gene 1 (RIG-I)-like helicases engage TBK1-IRF3 signaling pathways to regulate transcription of type I IFNs. In neuroinflammation TBK1 is involved in TLR-dependent [14] and -independent responses [7]. DNA sensing receptors such as DAI, IFI16, DDX41, and cGAS have all been shown to couple dsDNA recognition to TBK1 activation. STING is a critical mediator of DNA-induced TBK1 activation. Dysregulation of TBK1 activity is associated with autoimmune diseases and cancer, conditions which may be amenable to pharmacological inhibition of TBK1 [13]. Inhibition of TBK1 can also be considered in the context of the so-called type I interferonopathies, a set of rare autoimmune pathologies associated with chronic activation of IFN I responses [16]. |
Immuno Process Associations | ||
|
||
|
||
|
||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||||
|
||||||||||||
Clinically-Relevant Mutations and Pathophysiology Comments | ||||||||||||
Genetic mutations in TBK1 (e.g. increased TBK1 copy number resulting in a gain of function) is a rare cause of primary open angle glaucoma and normal tension glaucoma. Heterozygous loss of function TBK1 mutations are associated with herpes simplex encephalitis in childhood. Both of these associations are to diseases with neuroinflammatory components. TBK1 has now been identified by several studies as an amyotrophic lateral sclerosis (ALS) gene [3,11,27], often in comorbidity with frontotemporal dementia (FTD) [15,22]. |
General Comments |
TBK1 and IKKε phosphorylate the transcription factors interferon (IFN) regulator factor (IRF) 3 and 7. This function is critical for the induction of the type I IFN response (induction of IFN genes and IFN-stimulated genes) in response to microbial infection [10,24]. |
1. Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. (2011) Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat Biotechnol, 29 (11): 1039-45. [PMID:22037377]
2. Bonnard M, Mirtsos C, Suzuki S, Graham K, Huang J, Ng M, Itié A, Wakeham A, Shahinian A, Henzel WJ et al.. (2000) Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-kappaB-dependent gene transcription. EMBO J, 19 (18): 4976-85. [PMID:10990461]
3. Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ et al.. (2015) Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 347 (6229): 1436-41. [PMID:25700176]
4. Clark K, Peggie M, Plater L, Sorcek RJ, Young ER, Madwed JB, Hough J, McIver EG, Cohen P. (2011) Novel cross-talk within the IKK family controls innate immunity. Biochem J, 434 (1): 93-104. [PMID:21138416]
5. Clark K, Plater L, Peggie M, Cohen P. (2009) Use of the pharmacological inhibitor BX795 to study the regulation and physiological roles of TBK1 and IkappaB kinase epsilon: a distinct upstream kinase mediates Ser-172 phosphorylation and activation. J Biol Chem, 284 (21): 14136-46. [PMID:19307177]
6. Crew AP, Raina K, Dong H, Qian Y, Wang J, Vigil D, Serebrenik YV, Hamman BD, Morgan A, Ferraro C et al.. (2018) Identification and Characterization of Von Hippel-Lindau-Recruiting Proteolysis Targeting Chimeras (PROTACs) of TANK-Binding Kinase 1. J Med Chem, 61 (2): 583-598. [PMID:28692295]
7. Cui J, Chen Y, Wang HY, Wang RF. (2014) Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother, 10 (11): 3270-85. [PMID:25625930]
8. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP. (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol, 29 (11): 1046-51. [PMID:22037378]
9. Drewry DH, Annor-Gyamfi JK, Wells CI, Pickett JE, Dederer V, Preuss F, Mathea S, Axtman AD. (2022) Identification of Pyrimidine-Based Lead Compounds for Understudied Kinases Implicated in Driving Neurodegeneration. J Med Chem, 65 (2): 1313-1328. [PMID:34333981]
10. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 4 (5): 491-6. [PMID:12692549]
11. Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, Marroquin N, Nordin F, Hübers A, Weydt P et al.. (2015) Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci, 18 (5): 631-6. [PMID:25803835]
12. Gao Y, Davies SP, Augustin M, Woodward A, Patel UA, Kovelman R, Harvey KJ. (2013) A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery. Biochem J, 451 (2): 313-28. [PMID:23398362]
13. Hasan M, Yan N. (2016) Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol Res, 111: 336-42. [PMID:27353409]
14. Kawai T, Akira S. (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med, 13 (11): 460-9. [PMID:18029230]
15. Le Ber I, De Septenville A, Millecamps S, Camuzat A, Caroppo P, Couratier P, Blanc F, Lacomblez L, Sellal F, Fleury MC et al.. (2015) TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiol Aging, 36 (11): 3116.e5-3116.e8. [PMID:26476236]
16. Lee-Kirsch MA. (2017) The Type I Interferonopathies. Annu Rev Med, 68: 297-315. [PMID:27813875]
17. Lefranc J, Schulze VK, Hillig RC, Briem H, Prinz F, Mengel A, Heinrich T, Balint J, Rengachari S, Irlbacher H et al.. (2020) Discovery of BAY-985, a Highly Selective TBK1/IKKε Inhibitor. J Med Chem, 63 (2): 601-612. DOI: 10.1021/acs.jmedchem.9b01460 [PMID:31859507]
18. Li J, Huang J, Jeong JH, Park SJ, Wei R, Peng J, Luo Z, Chen YT, Feng Y, Luo JL. (2014) Selective TBK1/IKKi dual inhibitors with anticancer potency. Int J Cancer, 134 (8): 1972-80. [PMID:24150799]
19. McIver EG, Bryans J, Birchall K, Chugh J, Drake T, Lewis SJ, Osborne J, Smiljanic-Hurley E, Tsang W, Kamal A et al.. (2012) Synthesis and structure-activity relationships of a novel series of pyrimidines as potent inhibitors of TBK1/IKKε kinases. Bioorg Med Chem Lett, 22 (23): 7169-73. [PMID:23099093]
20. Ou YH, Torres M, Ram R, Formstecher E, Roland C, Cheng T, Brekken R, Wurz R, Tasker A, Polverino T et al.. (2011) TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol Cell, 41 (4): 458-70. [PMID:21329883]
21. Perrior TR, Newton GK, Stewart MR, Aqil R. (2012) Pyrimidine compounds as inhibitors of protein kinases ikk epsilon and/or tbk-1, processes for their preparation, and pharmaceutical compositions containing them. Patent number: WO2012010826. Assignee: Domainex Limited. Priority date: 19/07/2010. Publication date: 26/01/2012.
22. Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T, van Blitterswijk M, Nicholson AM et al.. (2015) Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol, 130 (1): 77-92. [PMID:25943890]
23. Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, Rubin JR, Mowers J, White NM, Hochberg I et al.. (2013) An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat Med, 19 (3): 313-21. [PMID:23396211]
24. Sankar S, Chan H, Romanow WJ, Li J, Bates RJ. (2006) IKK-i signals through IRF3 and NFkappaB to mediate the production of inflammatory cytokines. Cell Signal, 18 (7): 982-93. [PMID:16199137]
25. Thomson DW, Poeckel D, Zinn N, Rau C, Strohmer K, Wagner AJ, Graves AP, Perrin J, Bantscheff M, Duempelfeld B et al.. (2019) Discovery of GSK8612, a Highly Selective and Potent TBK1 Inhibitor. ACS Med Chem Lett, 10 (5): 780-785. DOI: 10.1021/acsmedchemlett.9b00027 [PMID:31097999]
26. Vu HL, Aplin AE. (2014) Targeting TBK1 inhibits migration and resistance to MEK inhibitors in mutant NRAS melanoma. Mol Cancer Res, 12 (10): 1509-19. [PMID:24962318]
27. Williams KL, McCann EP, Fifita JA, Zhang K, Duncan EL, Leo PJ, Marshall M, Rowe DB, Nicholson GA, Blair IP. (2015) Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin. Neurobiol Aging, 36 (12): 3334.e1-3334.e5. [PMID:26350399]
28. Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP et al.. (2010) Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem Biol, 17 (11): 1241-9. [PMID:21095574]
IKK family: TANK binding kinase 1. Last modified on 03/11/2022. Accessed on 17/09/2024. IUPHAR/BPS Guide to PHARMACOLOGY, https://www.guidetomalariapharmacology.org/GRAC/ObjectDisplayForward?objectId=2237.