Top ▲

Kir3.2

Click here for help

Target id: 435

Nomenclature: Kir3.2

Family: Inwardly rectifying potassium channels (KIR)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 2 1 423 21q22.13 KCNJ6 potassium inwardly rectifying channel subfamily J member 6 10,50
Mouse 2 1 425 16 55.44 cM Kcnj6 potassium inwardly-rectifying channel, subfamily J, member 6 33,60
Rat 2 1 425 11q11 Kcnj6 potassium inwardly-rectifying channel, subfamily J, member 6 54
Previous and Unofficial Names Click here for help
potassium inwardly rectifying channel subfamily J member 6 | BIR1 | GIRK2 | G protein-activated inward rectifier potassium channel 2 | inward rectifier K(+) channel Kir3.2 | KATP2 | KCNJ7 | potassium voltage-gated channel subfamily J member 6 | potassium channel, inwardly rectifying subfamily J, member 6 | potassium inwardly-rectifying channel
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with the beta-gamma G protein subunits
PDB Id:  4KFM
Resolution:  3.45Å
Species:  Mouse
References:  59
Image of receptor 3D structure from RCSB PDB
Description:  Cytoplasmic domain of Kir3.2
PDB Id:  1N9P
Resolution:  2.3Å
Species:  Mouse
References:  60
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) R201A mutant
PDB Id:  3SYP
Resolution:  3.12Å
Species:  Mouse
References:  58
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) R201A mutant in complex with PIP2
PDB Id:  3SYQ
Ligand:  PIP2
Resolution:  3.44Å
Species:  Mouse
References:  58
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with sodium and PIP2
PDB Id:  3SYA
Ligand:  PIP2
Resolution:  2.98Å
Species:  Mouse
References:  58
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with sodium
PDB Id:  3SYO
Ligand:  Na+
Resolution:  3.54Å
Species:  Mouse
References:  58
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Kir3.1 26,34
Kir3.3 18,26,55
Kir3.4 34
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
Gβγ 18,26
SNX27 37
regulator of G-protein signaling 1 8
regulator of G-protein signaling 2 8
regulator of G-protein signaling 3 8
regulator of G-protein signaling 4 8,11
regulator of G-protein signaling 8 49
Associated Protein Comments
The main functional assemblies in the brain are Kir3.1/3.2, Kir3.1/3.3 and Kir3.2/3.3 [2,9,12,26,28,32,34,36,42,55]. Kir3.2c contains PDZ binding motif that binds PDZ domain of SNX27 [37].
Functional Characteristics Click here for help
G protein-activated inward-rectifier current
Ion Selectivity and Conductance Click here for help
Species:  Mouse
Rank order:  K+ [30.0 pS]
References:  26
Ion Selectivity and Conductance Comments
Kir3.2 forms functional heteromers with Kir3.3 (31pS, [18]).

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
ethanol Small molecule or natural product Ligand has a PDB structure N/A Agonist - - 1x10-2 - 2x10-1 -120.0 – -70.0 4,22,35
Conc range: 1x10-2 - 2x10-1 M [4,22,35]
Holding voltage: -120.0 – -70.0 mV
PIP2 Small molecule or natural product Ligand is endogenous in the given species ? Agonist 6.3 pKd 5x10-5 Physiological 14
pKd 6.3 (Kd 5.01x10-7 M) Conc range: 5x10-5 M [14]
Holding voltage: Physiological
Na+ Click here for species-specific activity table Ligand is endogenous in the given species Hs Agonist 1.6 pEC50 - -80.0 13
pEC50 1.6 [13]
Holding voltage: -80.0 mV
View species-specific activator tables
Activator Comments
Kir3.2 is also activated by Gβγ subunits [26].

The studies of the action of phosphatidylinositol 4,5-bisphosphate, Na+ and ethanol were performed using Kir3.1/3.2 heteromers or Kir3.2 heterotetramers.
Gating inhibitors Click here for help
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
pimozide Small molecule or natural product Approved drug Ligand has a PDB structure Mm Antagonist 5.5 pEC50 - -70.0 23
pEC50 5.5 Data obtained using Kir3.1/3.2 heteromer [23]
Holding voltage: -70.0 mV
thioridazine Small molecule or natural product Approved drug Mm Antagonist 4.2 pEC50 - -70.0 23
pEC50 4.2 [23]
Holding voltage: -70.0 mV
haloperidol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 4.1 pEC50 - -70.0 23
pEC50 4.1 [23]
Holding voltage: -70.0 mV
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 3.8 pEC50 - -70.0 23
pEC50 3.8 [23]
Holding voltage: -70.0 mV
SCH-23390 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 4.1 – 5.1 pIC50 - -60.0 29
pIC50 4.1 – 5.1 [29]
Holding voltage: -60.0 mV
fluoxetine Small molecule or natural product Approved drug Mm Antagonist 4.1 – 4.8 pIC50 - -70.0 24
pIC50 4.1 – 4.8 [24]
Holding voltage: -70.0 mV
halothane Small molecule or natural product Approved drug N/A Antagonist 4.2 pIC50 - -70.0 57
pIC50 4.2 [57]
Holding voltage: -70.0 mV
bupivacaine Small molecule or natural product Approved drug N/A Antagonist 4.0 – 4.2 pIC50 - -110.0 – -40.0 63
pIC50 4.0 – 4.2 [63]
Holding voltage: -110.0 – -40.0 mV
F3 Small molecule or natural product N/A Antagonist 4.1 pIC50 - -80.0 61
pIC50 4.1 [61]
Holding voltage: -80.0 mV
verapamil Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 3.9 pIC50 - -100.0 27
pIC50 3.9 [27]
Holding voltage: -100.0 mV
dizocilpine Small molecule or natural product Ligand has a PDB structure Mm Antagonist 3.7 pIC50 - -100.0 27
pIC50 3.7 [27]
Holding voltage: -100.0 mV
View species-specific gating inhibitor tables
Gating Inhibitor Comments
The following references encompass data regarding the Kir3.1/3.2 heteromer: [23-24,29,57,61,63].

Kir3.2 is also inhibited by Gαi subunits[47]. RGS (regulators of G-protein signalling) proteins accelerate GTP hydrolysis of Gαsubunits, so that they increase the amount of GDP-bound Gα subunits, thus reducing the numbers of Gα-free Gβγ subunits [8,49]. Gα subunits bind to Kir3.2 [5,47]. ER forward export motif identified in Kir3.2 [39]. SNX27 regulates trafficking of Kir3.2c and Kir3.3 channels [37].

Data for verapamil and dizocilpine is derived from experiments using weaver mouse Kir3.2.
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
clomipramine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 4.4 pIC50 - -70.0 25
pIC50 4.4 [25]
Holding voltage: -70.0 mV
desipramine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 4.4 pIC50 - -70.0 25
pIC50 4.4 Data obtained using Kir3.1/3.2 heteromer [25]
Holding voltage: -70.0 mV
imipramine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 4.3 pIC50 - -70.0 25
pIC50 4.3 [25]
Holding voltage: -70.0 mV
amitriptyline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 4.0 pIC50 - -70.0 25
pIC50 4.0 [25]
Holding voltage: -70.0 mV
maprotiline Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 4.0 pIC50 - -70.0 25
pIC50 4.0 [25]
Holding voltage: -70.0 mV
nortriptyline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Mm Antagonist 3.9 pIC50 - -70.0 25
pIC50 3.9 [25]
Holding voltage: -70.0 mV
QX-314 Small molecule or natural product Mm Antagonist 3.7 pIC50 - - 27
pIC50 3.7 [27]
Channel Blocker Comments
The following references encompass data regarding the Kir3.1/3.2 heteromer: [25]
Tissue Distribution Click here for help
Hippocampus, substantia nigra, pontine nucleus, cerebellar granular layer, olfactory bulb, cerebral cortex, septum, amygdala.
Species:  Mouse
Technique:  In situ hybridisation, RT-PCR
References:  16,21
Testis.
Species:  Mouse
Technique:  Immunocytochemistry
References:  15
Cortex, lateral septal nucleus, hippocampus, cerebellum, substantia nigra, ventral tegmental area.
Species:  Mouse
Technique:  Immunohistochemistry
References:  36
Pancreas.
Species:  Rat
Technique:  In situ hybridisation
References:  53
Cotex, lateral septal nucleys, hippocampus, cerebellum, substantia nigra, ventral tegmental area.
Species:  Rat
Technique:  Immunohistochemistry
References:  16,36
Developmental expression of Kir3.1 in brain.
Species:  Rat
Technique:  In situ hybridisation
References:  20
Olfactory bulb, neocortex, hippocampus, amygdala, substantia nigra, thalamus, vestibular nucleus, cochlear nucleus.
Species:  Rat
Technique:  In situ hybridisation
References:  19
Physiological Functions Click here for help
In the endocrine organs, neurotransmitters induce hyperpolarisation of the membrane potential and lead to the inhibition of hormone secretion.
Species:  Rat
Tissue:  Pancreas, pituitary.
References:  41,62
Kir3.2d may be involved in spermatogenesis.
Species:  Mouse
Tissue:  Testis.
References:  15,46
Kir3.2 participates in the formation of the slow inhibitory postsynaptic potential and probably in the presynaptic inhibition in the brain. This function has also been shown in mice.
Species:  Rat
Tissue:  Brain.
References:  16,38,51
Physiological Functions Comments
  • Kir3.2 is known to be associated with slow receptor-dependent hyperpolarisation of membrane potential in hippocampus [42].
  • SNX27 regulates surface expression of Kir3.2/3.3 currents in VTA DA neurons [42].
  • Repeated cocaine weakens GABAB-Kir3 currents in prelimbic mouse cortex [12].
  • Decreased self-administration of cocaine in mice lacking Kir3.2 channels [40].
  • Single injection of methamphetamine reduces GABAB-Kir3 currents in VTA GABA and DA neurons [3,45].
  • Behavioural deficits in Kir3.2 knockout mice [48].
  • Activity-dependent potentiation of GABAB-Kir3.2/Kir3.3 currents in VTA DA neurons [31].
  • Contribution of Kir3.3 to GABAB receptor currents in VTA DA neurons affecting response to GHB [7,30].
  • Channels containing Kir3.2 and Kir3.3 serve as an inhibitory gate in LC regulating morphine withdrawal [6].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0003091 abnormal cell migration PMID: 2723742 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0003091 abnormal cell migration PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0004097 abnormal cerebellar cortex morphology PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0004097 abnormal cerebellar cortex morphology PMID: 4118891 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J-Kcnj6
MGI:104781  MP:0004098 abnormal cerebellar granule cell morphology PMID: 3882972 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0004098 abnormal cerebellar granule cell morphology PMID: 8855331 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000886 abnormal cerebellar granule layer PMID: 2723742  4118891 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000886 abnormal cerebellar granule layer PMID: 9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000886 abnormal cerebellar granule layer PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000886 abnormal cerebellar granule layer
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0006097 abnormal cerebellar lobule formation PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000889 abnormal cerebellar molecular layer PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000889 abnormal cerebellar molecular layer PMID: 9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000889 abnormal cerebellar molecular layer PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000889 abnormal cerebellar molecular layer
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 11596045 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 4118891 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer
Kcnj6tm1Stf|Kcnj6wv Kcnj6tm1Stf/Kcnj6wv
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000854 abnormal cerebellum development
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000872 abnormal cerebellum external granule cell layer morphology PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000872 abnormal cerebellum external granule cell layer morphology
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000849 abnormal cerebellum morphology PMID: 2723742  4118891 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000849 abnormal cerebellum morphology PMID: 8081012 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000849 abnormal cerebellum morphology PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000864 abnormal cerebellum vermis morphology PMID: 2723742 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000864 abnormal cerebellum vermis morphology PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0002206 abnormal CNS synaptic transmission PMID: 8855331 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0006333 abnormal cochlear nucleus morphology PMID: 2077109 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0003243 abnormal dopaminergic neuron morphology PMID: 7062116 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0002631 abnormal epididymis morphology PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001406 abnormal gait
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J * CBA
MGI:104781  MP:0002761 abnormal hippocampal mossy fiber morphology PMID: 8574680 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J * CBA
MGI:104781  MP:0008284 abnormal hippocampus pyramidal cell layer PMID: 8574680 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0001765 abnormal ion homeostasis PMID: 10766925 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0003313 abnormal locomotor activation PMID: 7062116 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0001392 abnormal locomotor activity PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0006362 abnormal male germ cell morphology PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0006362 abnormal male germ cell morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001386 abnormal maternal nurturing
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J-Kcnj6
MGI:104781  MP:0002066 abnormal motor capabilities/coordination/movement
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001516 abnormal motor coordination/ balance
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0003632 abnormal nervous system morphology PMID: 7062116 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0002204 abnormal neurotransmitter level PMID: 6127146 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0003964 abnormal noradrenaline level PMID: 6123371 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0008572 abnormal Purkinje cell dendrite morphology PMID: 11596045 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0008572 abnormal Purkinje cell dendrite morphology PMID: 11596045 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000877 abnormal Purkinje cell morphology PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000877 abnormal Purkinje cell morphology PMID: 4118891 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0006304 abnormal seminiferous epithelium morphology PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0006304 abnormal seminiferous epithelium morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002216 abnormal seminiferous tubule morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0002216 abnormal seminiferous tubule morphology PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002784 abnormal Sertoli cell morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0006380 abnormal spermatid morphology PMID: 10766925 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0006380 abnormal spermatid morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0001156 abnormal spermatogenesis PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0001156 abnormal spermatogenesis PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002674 abnormal sperm motility PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0002674 abnormal sperm motility PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000836 abnormal substantia nigra morphology PMID: 7062116 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000836 abnormal substantia nigra morphology PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0004494 abnormal synaptic glutamate release PMID: 6127146 
Kcnj6tm1Stf|Kcnj9tm1Kwn Kcnj6tm1Stf/Kcnj6tm1Stf,Kcnj9tm1Kwn/Kcnj9tm1Kwn
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MGI:108007  MP:0003635 abnormal synaptic transmission PMID: 12040038 
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0003635 abnormal synaptic transmission PMID: 12040038 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001146 abnormal testis morphology PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0006098 absent cerebellar lobules
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0009268 absent cerebellum fissure
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0001393 ataxia PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001393 ataxia PMID: 8081012  9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0005159 azoospermia PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001265 decreased body size
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0001262 decreased body weight PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001262 decreased body weight
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0005643 decreased dopamine level PMID: 7062116 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0003910 decreased eating behavior
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0000880 decreased Purkinje cell number PMID: 2077109 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008770 decreased survivor rate
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000884 delaminated Purkinje cell layer PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J * CBA
MGI:104781  MP:0010011 ectopic hippocampus pyramidal cells PMID: 8574680 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000885 ectopic Purkinje cell PMID: 11596045 
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0009358 environmentally induced seizures PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002686 globozoospermia PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0004144 hypotonia PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001523 impaired righting response PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001523 impaired righting response
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0006042 increased apoptosis PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0006042 increased apoptosis PMID: 9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0006042 increased apoptosis PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000879 increased Purkinje cell number
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008911 induced hyperactivity
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008569 lethality at weaning
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001925 male infertility PMID: 8081012 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0001925 male infertility PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002687 oligozoospermia PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0002687 oligozoospermia PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0002082 postnatal lethality
Kcnj6tm1Stf|Kcnj9tm1Kwn Kcnj6tm1Stf/Kcnj6tm1Stf,Kcnj9tm1Kwn/Kcnj9tm1Kwn
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MGI:108007  MP:0002083 premature death PMID: 12040038 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J-Kcnj6
MGI:104781  MP:0002083 premature death
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0002083 premature death
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001923 reduced female fertility
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001922 reduced male fertility
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0010323 retropulsion PMID: 8081012 
Kcnj6tm1Stf|Kcnj9tm1Kwn Kcnj6tm1Stf/Kcnj6tm1Stf,Kcnj9tm1Kwn/Kcnj9tm1Kwn
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MGI:108007  MP:0002064 seizures PMID: 12040038 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001154 seminiferous tubule degeneration PMID: 8081012  9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0000852 small cerebellum PMID: 6127146 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000852 small cerebellum PMID: 6123371  8081012  9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000852 small cerebellum PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000852 small cerebellum
Kcnj6tm1Stf|Kcnj6wv Kcnj6tm1Stf/Kcnj6wv
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:104781  MP:0006099 thin cerebellar granule layer PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0003997 tonic-clonic seizures
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0003997 tonic-clonic seizures PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000745 tremors PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000745 tremors
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008913 weaving
Clinically-Relevant Mutations and Pathophysiology Comments
In the weaver mouse the natural missense mutation at molecular location G156S in Kir3.2 permits Na+, as well as K+, ions to pass through the channel and reduces its sensitivity to Gβγ [27,44,52]. The weaver mouse experiences spontaneous tonic-clonic seizures [1,46,51].
Gene Expression and Pathophysiology Click here for help
Kir3.2 knockout mouse.
Tissue or cell type:  Brain
Pathophysiology:  Spontaneous seizures, increased susceptibility to pharmacologically-induced seizures.
Species:  Mouse
Technique:  Knockout
References:  51
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Mouse
Amino acids:  302
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Rat
Description:  Kir3.2c exists as a channel in heterologous complex with Kir3.2a in dopaminergic neurons of the substantia nigra.
Amino acids:  425
Nucleotide accession: 
Protein accession: 
References:  16,54
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2d shows specific expression in testis and behaves as a homomeric channel.
Amino acids:  407
Nucleotide accession: 
Protein accession: 
References:  15
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2a. This isoform exists as a channel in heterologous complex with Kir3.1 throughout the brain.
Amino acids:  414
Nucleotide accession: 
Protein accession: 
References:  33,36
Type:  Splice variant
Species:  Rat
Description:  Kir3.2a. This protein is specifically expressed in brain and exists as a channel in heterologous complex with Kir3.2c in dopaminergic neurons in the substantia nigra.
Amino acids:  414
Nucleotide accession: 
Protein accession: 
References:  16,43,54
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2b is ubiquitously expressed.
Amino acids:  327
Nucleotide accession: 
Protein accession: 
References:  17
Type:  Splice variant
Species:  Rat
Description:  Kir3.2b is ubiquitously expressed.
Amino acids:  327
Nucleotide accession: 
Protein accession: 
References:  54
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2c exists as a heterologous channel in complex with Kir3.1 throughout the brain. In pancreatic α cells Kir3.2c co-expresses with Kir3.4.
Amino acids:  425
Nucleotide accession: 
Protein accession: 
References:  34,36,62
Biologically Significant Variant Comments
Distribution of Kir3.2 is related to isoform expression. At least seven exons contribute to producing at least four splice variants [15,56,60]. In the brain some Kir3.2 isoforms exist as complexes, not only with Kir3.1, but also with Kir3.3 [18,55] and Kir 3.4 [34].

References

Show »

1. Adelbrecht C, Murer MG, Lauritzen I, Lesage F, Ladzunski M, Agid Y, Raisman-Vozari R. (1997) An immunocytochemical study of a G-protein-gated inward rectifier K+ channel (GIRK2) in the weaver mouse mesencephalon. Neuroreport, 8 (4): 969-74. [PMID:9141074]

2. Aguado C, Colón J, Ciruela F, Schlaudraff F, Cabañero MJ, Perry C, Watanabe M, Liss B, Wickman K, Luján R. (2008) Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum. J Neurochem, 105 (2): 497-511. [PMID:18088366]

3. Arora D, Hearing M, Haluk DM, Mirkovic K, Fajardo-Serrano A, Wessendorf MW, Watanabe M, Luján R, Wickman K. (2011) Acute cocaine exposure weakens GABA(B) receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area. J Neurosci, 31 (34): 12251-7. [PMID:21865468]

4. Aryal P, Dvir H, Choe S, Slesinger PA. (2009) A discrete alcohol pocket involved in GIRK channel activation. Nat Neurosci, 12 (8): 988-95. [PMID:19561601]

5. Clancy SM, Fowler CE, Finley M, Suen KF, Arrabit C, Berton F, Kosaza T, Casey PJ, Slesinger PA. (2005) Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Mol Cell Neurosci, 28 (2): 375-89. [PMID:15691717]

6. Cruz HG, Berton F, Sollini M, Blanchet C, Pravetoni M, Wickman K, Lüscher C. (2008) Absence and rescue of morphine withdrawal in GIRK/Kir3 knock-out mice. J Neurosci, 28 (15): 4069-77. [PMID:18400906]

7. Cruz HG, Ivanova T, Lunn ML, Stoffel M, Slesinger PA, Lüscher C. (2004) Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci, 7 (2): 153-9. [PMID:14745451]

8. Doupnik CA, Davidson N, Lester HA, Kofuji P. (1997) RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci USA, 94 (19): 10461-6. [PMID:9294233]

9. Fernández-Alacid L, Aguado C, Ciruela F, Martín R, Colón J, Cabañero MJ, Gassmann M, Watanabe M, Shigemoto R, Wickman K et al.. (2009) Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells. J Neurochem, 110 (4): 1363-76. [PMID:19558451]

10. Ferrer J, Nichols CG, Makhina EN, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A. (1995) Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels. J Biol Chem, 270 (44): 26086-91. [PMID:7592809]

11. Fowler CE, Aryal P, Suen KF, Slesinger PA. (2007) Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol (Lond.), 580 (Pt 1): 51-65. [PMID:17185339]

12. Hearing M, Kotecki L, Marron Fernandez de Velasco E, Fajardo-Serrano A, Chung HJ, Luján R, Wickman K. (2013) Repeated cocaine weakens GABA(B)-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron, 80 (1): 159-70. [PMID:24094109]

13. Ho IH, Murrell-Lagnado RD. (1999) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J Biol Chem, 274 (13): 8639-48. [PMID:10085101]

14. Huang CL, Feng S, Hilgemann DW. (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature, 391 (6669): 803-6. [PMID:9486652]

15. Inanobe A, Horio Y, Fujita A, Tanemoto M, Hibino H, Inageda K, Kurachi Y. (1999) Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. J Physiol (Lond.), 521 Pt 1: 19-30. [PMID:10562331]

16. Inanobe A, Yoshimoto Y, Horio Y, Morishige KI, Hibino H, Matsumoto S, Tokunaga Y, Maeda T, Hata Y, Takai Y et al.. (1999) Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci, 19 (3): 1006-17. [PMID:9920664]

17. Isomoto S, Kondo C, Takahashi N, Matsumoto S, Yamada M, Takumi T, Horio Y, Kurachi Y. (1996) A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes. Biochem Biophys Res Commun, 218 (1): 286-91. [PMID:8573147]

18. Jelacic TM, Kennedy ME, Wickman K, Clapham DE. (2000) Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J Biol Chem, 275 (46): 36211-6. [PMID:10956667]

19. Karschin C, Dissmann E, Stühmer W, Karschin A. (1996) IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J Neurosci, 16 (11): 3559-70. [PMID:8642402]

20. Karschin C, Karschin A. (1997) Ontogeny of gene expression of Kir channel subunits in the rat. Mol Cell Neurosci, 10 (3-4): 131-48. [PMID:9532576]

21. Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T. (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem Biophys Res Commun, 208 (3): 1166-73. [PMID:7702616]

22. Kobayashi T, Ikeda K, Kojima H, Niki H, Yano R, Yoshioka T, Kumanishi T. (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci, 2 (12): 1091-7. [PMID:10570486]

23. Kobayashi T, Ikeda K, Kumanishi T. (2000) Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes. Br J Pharmacol, 129 (8): 1716-22. [PMID:10780978]

24. Kobayashi T, Washiyama K, Ikeda K. (2003) Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). Br J Pharmacol, 138 (6): 1119-28. [PMID:12684268]

25. Kobayashi T, Washiyama K, Ikeda K. (2004) Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology, 29 (10): 1841-51. [PMID:15150531]

26. Kofuji P, Davidson N, Lester HA. (1995) Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl Acad Sci USA, 92 (14): 6542-6. [PMID:7604029]

27. Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA, Hatten ME. (1996) Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron, 16 (5): 941-52. [PMID:8630252]

28. Koyrakh L, Luján R, Colón J, Karschin C, Kurachi Y, Karschin A, Wickman K. (2005) Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J Neurosci, 25 (49): 11468-78. [PMID:16339040]

29. Kuzhikandathil EV, Oxford GS. (2002) Classic D1 dopamine receptor antagonist R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) directly inhibits G protein-coupled inwardly rectifying potassium channels. Mol Pharmacol, 62 (1): 119-26. [PMID:12065762]

30. Labouèbe G, Lomazzi M, Cruz HG, Creton C, Luján R, Li M, Yanagawa Y, Obata K, Watanabe M, Wickman K et al.. (2007) RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat Neurosci, 10 (12): 1559-68. [PMID:17965710]

31. Lalive AL, Munoz MB, Bellone C, Slesinger PA, Lüscher C, Tan KR. (2014) Firing modes of dopamine neurons drive bidirectional GIRK channel plasticity. J Neurosci, 34 (15): 5107-14. [PMID:24719090]

32. Leaney JL. (2003) Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur J Neurosci, 18 (8): 2110-8. [PMID:14622172]

33. Lesage F, Duprat F, Fink M, Guillemare E, Coppola T, Lazdunski M, Hugnot JP. (1994) Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett, 353 (1): 37-42. [PMID:7926018]

34. Lesage F, Guillemare E, Fink M, Duprat F, Heurteaux C, Fosset M, Romey G, Barhanin J, Lazdunski M. (1995) Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J Biol Chem, 270 (48): 28660-7. [PMID:7499385]

35. Lewohl JM, Wilson WR, Mayfield RD, Brozowski SJ, Morrisett RA, Harris RA. (1999) G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat Neurosci, 2 (12): 1084-90. [PMID:10570485]

36. Liao YJ, Jan YN, Jan LY. (1996) Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J Neurosci, 16 (22): 7137-50. [PMID:8929423]

37. Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates 3rd JR, Slesinger PA. (2007) A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci, 10 (10): 1249-59. [PMID:17828261]

38. Lüscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA. (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron, 19 (3): 687-95. [PMID:9331358]

39. Ma D, Zerangue N, Raab-Graham K, Fried SR, Jan YN, Jan LY. (2002) Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron, 33 (5): 715-29. [PMID:11879649]

40. Morgan AD, Carroll ME, Loth AK, Stoffel M, Wickman K. (2003) Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice. Neuropsychopharmacology, 28 (5): 932-8. [PMID:12637950]

41. Morishige K, Inanobe A, Yoshimoto Y, Kurachi H, Murata Y, Tokunaga Y, Maeda T, Maruyama Y, Kurachi Y. (1999) Secretagogue-induced exocytosis recruits G protein-gated K+ channels to plasma membrane in endocrine cells. J Biol Chem, 274 (12): 7969-74. [PMID:10075694]

42. Munoz MB, Slesinger PA. (2014) Sorting nexin 27 regulation of G protein-gated inwardly rectifying K⁺ channels attenuates in vivo cocaine response. Neuron, 82 (3): 659-69. [PMID:24811384]

43. Murer G, Adelbrecht C, Lauritzen I, Lesage F, Lazdunski M, Agid Y, Raisman-Vozari R. (1997) An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience, 80 (2): 345-57. [PMID:9284339]

44. Navarro B, Kennedy ME, Velimirovíc B, Bhat D, Peterson AS, Clapham DE. (1996) Nonselective and G betagamma-insensitive weaver K+ channels. Science, 272 (5270): 1950-3. [PMID:8658170]

45. Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, Martínez-Hernández J, Watanabe M, Moss SJ, Luján R et al.. (2012) Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron, 73 (5): 978-89. [PMID:22405207]

46. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet, 11 (2): 126-9. [PMID:7550338]

47. Peleg S, Varon D, Ivanina T, Dessauer CW, Dascal N. (2002) G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron, 33 (1): 87-99. [PMID:11779482]

48. Pravetoni M, Wickman K. (2008) Behavioral characterization of mice lacking GIRK/Kir3 channel subunits. Genes Brain Behav, 7 (5): 523-31. [PMID:18194467]

49. Saitoh O, Kubo Y, Miyatani Y, Asano T, Nakata H. (1997) RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature, 390 (6659): 525-9. [PMID:9394004]

50. Schoots O, Wilson JM, Ethier N, Bigras E, Hebert TE, Van Tol HH. (1999) Co-expression of human Kir3 subunits can yield channels with different functional properties. Cell Signal, 11 (12): 871-83. [PMID:10659995]

51. Signorini S, Liao YJ, Duncan SA, Jan LY, Stoffel M. (1997) Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc Natl Acad Sci USA, 94 (3): 923-7. [PMID:9023358]

52. Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR. (1996) Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron, 16 (2): 321-31. [PMID:8789947]

53. Stoffel M, Tokuyama Y, Trabb JB, German MS, Tsaar ML, Jan LY, Polonsky KS, Bell GI. (1995) Cloning of rat KATP-2 channel and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Biochem Biophys Res Commun, 212 (3): 894-9. [PMID:7626127]

54. Suda S, Nibuya M, Suda H, Takamatsu K, Miyazaki T, Nomura S, Kawai N. (2002) Potassium channel mRNAs with AU-rich elements and brain-specific expression. Biochem Biophys Res Commun, 291 (5): 1265-71. [PMID:11883954]

55. Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, Wickman K. (2002) G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J Neurosci, 22 (11): 4328-34. [PMID:12040038]

56. Wei J, Hodes ME, Piva R, Feng Y, Wang Y, Ghetti B, Dlouhy SR. (1998) Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics, 51 (3): 379-90. [PMID:9721208]

57. Weigl LG, Schreibmayer W. (2001) G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics. Mol Pharmacol, 60 (2): 282-9. [PMID:11455015]

58. Whorton MR, MacKinnon R. (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell, 147 (1): 199-208. [PMID:21962516]

59. Whorton MR, MacKinnon R. (2013) X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature, 498 (7453): 190-7. [PMID:23739333]

60. Wickman K, Pu WT, Clapham DE. (2002) Structural characterization of the mouse Girk genes. Gene, 284 (1-2): 241-50. [PMID:11891065]

61. Yamakura T, Lewohl JM, Harris RA. (2001) Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels. Anesthesiology, 95 (1): 144-53. [PMID:11465552]

62. Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y. (1999) Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett, 444 (2-3): 265-9. [PMID:10050772]

63. Zhou W, Arrabit C, Choe S, Slesinger PA. (2001) Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels. Proc Natl Acad Sci USA, 98 (11): 6482-7. [PMID:11353868]

Contributors

Show »

How to cite this page