Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
The 5-HT3 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-Hydroxytryptamine (serotonin) receptors [20]) is a ligand-gated ion channel of the Cys-loop family that includes the zinc-activated channels, nicotinic acetylcholine, GABAA and strychnine-sensitive glycine receptors. The receptor exists as a pentamer of 4 transmembrane (TM) subunits that form an intrinsic cation selective channel [5]. Five human 5-HT3 receptor subunits have been cloned and homo-oligomeric assemblies of 5-HT3A and hetero-oligomeric assemblies of 5-HT3A and 5-HT3B subunits have been characterised in detail. The 5-HT3C (HTR3C, Q8WXA8), 5-HT3D (HTR3D, Q70Z44) and 5-HT3E (HTR3E, A5X5Y0) subunits [26,37], like the 5-HT3B subunit, do not form functional homomers, but are reported to assemble with the 5-HT3A subunit to influence its functional expression rather than pharmacological profile [17,39,55]. 5-HT3A, -C, -D, and -E subunits also interact with the chaperone RIC-3 which predominantly enhances the surface expression of homomeric 5-HT3A receptor [55]. The co-expression of 5-HT3A and 5-HT3C-E subunits has been demonstrated in human colon [25]. A recombinant hetero-oligomeric 5-HT3AB receptor has been reported to contain two copies of the 5-HT3A subunit and three copies of the 5-HT3B subunit in the order B-B-A-B-A [6], but this is inconsistent with recent reports which show at least one A-A interface [29,53]. The 5-HT3B subunit imparts distinctive biophysical properties upon hetero-oligomeric 5-HT3AB versus homo-oligomeric 5-HT3A recombinant receptors [11,13,15,23,27,42,46], influences the potency of channel blockers, but generally has only a modest effect upon the apparent affinity of agonists, or the affinity of antagonists ([8], but see [10,12-13]) which may be explained by the orthosteric binding site residing at an interface formed between 5-HT3A subunits [29,53]. However, 5-HT3A and 5-HT3AB receptors differ in their allosteric regulation by some general anaesthetic agents, small alcohols and indoles [21,44-45]. The potential diversity of 5-HT3 receptors is increased by alternative splicing of the genes HTR3A and HTR3E [9,18,36,38-39]. In addition, the use of tissue-specific promoters driving expression from different transcriptional start sites has been reported for the HTR3A, HTR3B, HTR3D and HTR3E genes, which could result in 5-HT3 subunits harbouring different N-termini [23,36,54]. To date, inclusion of the 5-HT3A subunit appears imperative for 5-HT3 receptor function.
5-HT3AB C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||
5-HT3A C Show summary »« Hide summary More detailed page
|
5-HT3A C Show summary »« Hide summary More detailed page
|
||||||||||||||||
5-HT3B C Show summary »« Hide summary More detailed page
|
||||||||||||||||
5-HT3C C Show summary »« Hide summary More detailed page
|
||||||||||||||||
5-HT3D C Show summary »« Hide summary More detailed page
|
||||||||||||||||
5-HT3E C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Andrews PL, Sanger GJ. (2014) Nausea and the quest for the perfect anti-emetic. Eur J Pharmacol, 722: 108-21. [PMID:24157981]
* Barnes NM, Ahern GP, Becamel C, Bockaert J, Camilleri M, Chaumont-Dubel S, Claeysen S, Cunningham KA, Fone KC, Gershon M et al.. (2021) International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function. Pharmacol Rev, 73 (1): 310-520. [PMID:33370241]
Barnes NM, Hales TG, Lummis SC, Peters JA. (2009) The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology, 56 (1): 273-84. [PMID:18761359]
Chameau P, van Hooft JA. (2006) Serotonin 5-HT(3) receptors in the central nervous system. Cell Tissue Res, 326 (2): 573-81. [PMID:16826372]
Costall B, Naylor RJ. (2004) 5-HT3 receptors. Curr Drug Targets CNS Neurol Disord, 3 (1): 27-37. [PMID:14965242]
Engleman EA, Rodd ZA, Bell RL, Murphy JM. (2008) The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS Neurol Disord Drug Targets, 7 (5): 454-67. [PMID:19128203]
* Fakhfouri G, Mousavizadeh K, Mehr SE, Dehpour AR, Zirak MR, Ghia JE, Rahimian R. (2015) From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists. Mol Neurobiol, 52 (3): 1670-1679. [PMID:25377794]
* Gupta D, Prabhakar V, Radhakrishnan M. (2016) 5HT3 receptors: Target for new antidepressant drugs. Neurosci Biobehav Rev, 64: 311-25. [PMID:26976353]
Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP. (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev, 46 (2): 157-203. [PMID:7938165]
Jensen AA, Davies PA, Bräuner-Osborne H, Krzywkowski K. (2008) 3B but which 3B and that's just one of the questions: the heterogeneity of human 5-HT3 receptors. Trends Pharmacol Sci, 29 (9): 437-44. [PMID:18597859]
* Lochner M, Thompson AJ. (2015) A review of fluorescent ligands for studying 5-HT3 receptors. Neuropharmacology, 98: 31-40. [PMID:25892507]
Lummis SC. (2012) 5-HT(3) receptors. J Biol Chem, 287 (48): 40239-45. [PMID:23038271]
Machu TK. (2011) Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther, 130 (3): 338-47. [PMID:21356241]
Modica MN, Pittalà V, Romeo G, Salerno L, Siracusa MA. (2010) Serotonin 5-HT3 and 5-HT4 ligands: an update of medicinal chemistry research in the last few years. Curr Med Chem, 17 (4): 334-62. [PMID:20015043]
Niesler B. (2011) 5-HT(3) receptors: potential of individual isoforms for personalised therapy. Curr Opin Pharmacol, 11 (1): 81-6. [PMID:21345729]
Niesler B, Kapeller J, Hammer C, Rappold G. (2008) Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics, 9 (5): 501-4. [PMID:18466097]
Parker RM, Bentley KR, Barnes NM. (1996) Allosteric modulation of 5-HT3 receptors: focus on alcohols and anaesthetic agents. Trends Pharmacol Sci, 17 (3): 95-9. [PMID:8936343]
Peters JA, Hales TG, Lambert JJ. (2005) Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. Trends Pharmacol Sci, 26 (11): 587-94. [PMID:16194573]
* Rojas C, Raje M, Tsukamoto T, Slusher BS. (2014) Molecular mechanisms of 5-HT(3) and NK(1) receptor antagonists in prevention of emesis. Eur J Pharmacol, 722: 26-37. [PMID:24184669]
Rojas C, Slusher BS. (2012) Pharmacological mechanisms of 5-HT₃ and tachykinin NK₁ receptor antagonism to prevent chemotherapy-induced nausea and vomiting. Eur J Pharmacol, 684 (1-3): 1-7. [PMID:22425650]
Thompson AJ. (2013) Recent developments in 5-HT3 receptor pharmacology. Trends Pharmacol Sci, 34 (2): 100-9. [PMID:23380247]
Thompson AJ, Lester HA, Lummis SC. (2010) The structural basis of function in Cys-loop receptors. Q Rev Biophys, 43 (4): 449-99. [PMID:20849671]
Thompson AJ, Lummis SC. (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets, 11 (4): 527-40. [PMID:17373882]
Walstab J, Rappold G, Niesler B. (2010) 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther, 128 (1): 146-69. [PMID:20621123]
Yaakob N, Malone DT, Exintaris B, Irving HR. (2011) Heterogeneity amongst 5-HT₃ receptor subunits: is this significant?. Curr Mol Med, 11 (1): 57-68. [PMID:21189117]
1. Abi-Dargham A, Laruelle M, Wong DT, Robertson DW, Weinberger DR, Kleinman JE. (1993) Pharmacological and regional characterization of [3H]LY278584 binding sites in human brain. J Neurochem, 60 (2): 730-7. [PMID:8419547]
2. Alexander SP, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Southan C, Davies JA et al.. (2015) The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. Br J Pharmacol, 172 (24): 5942-55. [PMID:26650442]
3. Alexander SP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA et al.. (2017) THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. Br J Pharmacol, 174 Suppl 1: S195-S207. [PMID:29055039]
4. Bang-Andersen B, Ruhland T, Jørgensen M, Smith G, Frederiksen K, Jensen KG, Zhong H, Nielsen SM, Hogg S, Mørk A et al.. (2011) Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder. J Med Chem, 54 (9): 3206-21. [PMID:21486038]
5. Barnes NM, Hales TG, Lummis SC, Peters JA. (2009) The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology, 56 (1): 273-84. [PMID:18761359]
6. Barrera NP, Herbert P, Henderson RM, Martin IL, Edwardson JM. (2005) Atomic force microscopy reveals the stoichiometry and subunit arrangement of 5-HT3 receptors. Proc Natl Acad Sci USA, 102 (35): 12595-600. [PMID:16116092]
7. Belelli D, Balcarek JM, Hope AG, Peters JA, Lambert JJ, Blackburn TP. (1995) Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. Mol Pharmacol, 48 (6): 1054-62. [PMID:8848005]
8. Brady CA, Stanford IM, Ali I, Lin L, Williams JM, Dubin AE, Hope AG, Barnes NM. (2001) Pharmacological comparison of human homomeric 5-HT3A receptors versus heteromeric 5-HT3A/3B receptors. Neuropharmacology, 41 (2): 282-4. [PMID:11489465]
9. Brüss M, Barann M, Hayer-Zillgen M, Eucker T, Göthert M, Bönisch H. (2000) Modified 5-HT3A receptor function by co-expression of alternatively spliced human 5-HT3A receptor isoforms. Naunyn Schmiedebergs Arch Pharmacol, 362 (4-5): 392-401. [PMID:11111833]
10. Das P, Dillon GH. (2003) The 5-HT3B subunit confers reduced sensitivity to picrotoxin when co-expressed with the 5-HT3A receptor. Brain Res Mol Brain Res, 119 (2): 207-12. [PMID:14625088]
11. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF. (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature, 397 (6717): 359-63. [PMID:9950429]
12. Deeb TZ, Sharp D, Hales TG. (2009) Direct subunit-dependent multimodal 5-hydroxytryptamine3 receptor antagonism by methadone. Mol Pharmacol, 75 (4): 908-17. [PMID:19131665]
13. Dubin AE, Huvar R, D'Andrea MR, Pyati J, Zhu JY, Joy KC, Wilson SJ, Galindo JE, Glass CA, Luo L et al.. (1999) The pharmacological and functional characteristics of the serotonin 5-HT(3A) receptor are specifically modified by a 5-HT(3B) receptor subunit. J Biol Chem, 274 (43): 30799-810. [PMID:10521471]
14. Edwards E, Hampton E, Ashby CR, Zhang J, Wang RY. (1996) 5-HT3-like receptors in the rat medial prefrontal cortex: further pharmacological characterization. Brain Res, 733 (1): 21-30. [PMID:8891244]
15. Hanna MC, Davies PA, Hales TG, Kirkness EF. (2000) Evidence for expression of heteromeric serotonin 5-HT(3) receptors in rodents. J Neurochem, 75 (1): 240-7. [PMID:10854267]
16. Hirata T, Keto Y, Funatsu T, Akuzawa S, Sasamata M. (2007) Evaluation of the pharmacological profile of ramosetron, a novel therapeutic agent for irritable bowel syndrome. J Pharmacol Sci, 104 (3): 263-73. [PMID:17652911]
17. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM, Yusaf SP et al.. (2009) Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function. J Neurochem, 108 (2): 384-96. [PMID:19012743]
18. Hope AG, Downie DL, Sutherland L, Lambert JJ, Peters JA, Burchell B. (1993) Cloning and functional expression of an apparent splice variant of the murine 5-HT3 receptor A subunit. Eur J Pharmacol, 245 (2): 187-92. [PMID:7683998]
19. Hope AG, Peters JA, Brown AM, Lambert JJ, Blackburn TP. (1996) Characterization of a human 5-hydroxytryptamine3 receptor type A (h5-HT3R-AS) subunit stably expressed in HEK 293 cells. Br J Pharmacol, 118 (5): 1237-45. [PMID:8818349]
20. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP. (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev, 46 (2): 157-203. [PMID:7938165]
21. Hu XQ, Peoples RW. (2008) The 5-HT3B subunit confers spontaneous channel opening and altered ligand properties of the 5-HT3 receptor. J Biol Chem, 283 (11): 6826-31. [PMID:18187416]
22. Isenberg KE, Ukhun IA, Holstad SG, Jafri S, Uchida U, Zorumski CF, Yang J. (1993) Partial cDNA cloning and NGF regulation of a rat 5-HT3 receptor subunit. Neuroreport, 5 (2): 121-4. [PMID:7509203]
23. Jensen AA, Davies PA, Bräuner-Osborne H, Krzywkowski K. (2008) 3B but which 3B and that's just one of the questions: the heterogeneity of human 5-HT3 receptors. Trends Pharmacol Sci, 29 (9): 437-44. [PMID:18597859]
24. Jensen TN, Nielsen J, Frederiksen K, Ebert B. (2006) Molecular cloning and pharmacological characterization of serotonin 5-HT(3A) receptor subtype in dog. Eur J Pharmacol, 538 (1-3): 23-31. [PMID:16647053]
25. Kapeller J, Möller D, Lasitschka F, Autschbach F, Hovius R, Rappold G, Brüss M, Gershon MD, Niesler B. (2011) Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E. J Comp Neurol, 519 (3): 420-32. [PMID:21192076]
26. Karnovsky AM, Gotow LF, McKinley DD, Piechan JL, Ruble CL, Mills CJ, Schellin KA, Slightom JL, Fitzgerald LR, Benjamin CW et al.. (2003) A cluster of novel serotonin receptor 3-like genes on human chromosome 3. Gene, 319: 137-48. [PMID:14597179]
27. Kelley SP, Dunlop JI, Kirkness EF, Lambert JJ, Peters JA. (2003) A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature, 424 (6946): 321-4. [PMID:12867984]
28. Lankiewicz S, Lobitz N, Wetzel CH, Rupprecht R, Gisselmann G, Hatt H. (1998) Molecular cloning, functional expression, and pharmacological characterization of 5-hydroxytryptamine3 receptor cDNA and its splice variants from guinea pig. Mol Pharmacol, 53 (2): 202-12. [PMID:9463477]
29. Lochner M, Lummis SC. (2010) Agonists and antagonists bind to an A-A interface in the heteromeric 5-HT3AB receptor. Biophys J, 98 (8): 1494-502. [PMID:20409468]
30. Lummis SC, Thompson AJ, Bencherif M, Lester HA. (2011) Varenicline is a potent agonist of the human 5-hydroxytryptamine3 receptor. J Pharmacol Exp Ther, 339 (1): 125-31. [PMID:21775477]
31. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science, 254 (5030): 432-7. [PMID:1718042]
32. Miyake A, Mochizuki S, Takemoto Y, Akuzawa S. (1995) Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol, 48 (3): 407-16. [PMID:7565620]
33. Mochizuki S, Miyake A, Furuichi K. (1999) Identification of a domain affecting agonist potency of meta-chlorophenylbiguanide in 5-HT3 receptors. Eur J Pharmacol, 369 (1): 125-32. [PMID:10204690]
34. Mochizuki S, Watanabe T, Miyake A, Saito M, Furuichi K. (2000) Cloning, expression, and characterization of ferret 5-HT(3) receptor subunit. Eur J Pharmacol, 399 (2-3): 97-106. [PMID:10884508]
35. Moura Barbosa AJ, De Rienzo F, Ramos MJ, Menziani MC. (2010) Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors. Eur J Med Chem, 45 (11): 4746-60. [PMID:20724042]
36. Niesler B. (2011) 5-HT(3) receptors: potential of individual isoforms for personalised therapy. Curr Opin Pharmacol, 11 (1): 81-6. [PMID:21345729]
37. Niesler B, Frank B, Kapeller J, Rappold GA. (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene, 310: 101-11. [PMID:12801637]
38. Niesler B, Kapeller J, Hammer C, Rappold G. (2008) Serotonin type 3 receptor genes: HTR3A, B, C, D, E. Pharmacogenomics, 9 (5): 501-4. [PMID:18466097]
39. Niesler B, Walstab J, Combrink S, Möller D, Kapeller J, Rietdorf J, Bönisch H, Göthert M, Rappold G, Brüss M. (2007) Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Mol Pharmacol, 72 (1): 8-17. [PMID:17392525]
40. Parker RM, Barnes JM, Ge J, Barber PC, Barnes NM. (1996) Autoradiographic distribution of [3H]-(S)-zacopride-labelled 5-HT3 receptors in human brain. J Neurol Sci, 144 (1-2): 119-27. [PMID:8994113]
41. Parker RM, Bentley KR, Barnes NM. (1996) Allosteric modulation of 5-HT3 receptors: focus on alcohols and anaesthetic agents. Trends Pharmacol Sci, 17 (3): 95-9. [PMID:8936343]
42. Peters JA, Hales TG, Lambert JJ. (2005) Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. Trends Pharmacol Sci, 26 (11): 587-94. [PMID:16194573]
43. Roberts A, Grafton G, Powell AD, Brock K, Chen C, Xie D, Huang J, Liu S, Cooper AJ, Brady CA et al.. (2020) CSTI-300 (SMP-100); a Novel 5-HT3 Receptor Partial Agonist with Potential to Treat Patients with Irritable Bowel Syndrome or Carcinoid Syndrome. J Pharmacol Exp Ther, 373 (1): 122-134. [PMID:32102919]
44. Rüsch D, Musset B, Wulf H, Schuster A, Raines DE. (2007) Subunit-dependent modulation of the 5-hydroxytryptamine type 3 receptor open-close equilibrium by n-alcohols. J Pharmacol Exp Ther, 321 (3): 1069-74. [PMID:17360702]
45. Solt K, Stevens RJ, Davies PA, Raines DE. (2005) General anesthetic-induced channel gating enhancement of 5-hydroxytryptamine type 3 receptors depends on receptor subunit composition. J Pharmacol Exp Ther, 315 (2): 771-6. [PMID:16081679]
46. Stewart A, Davies PA, Kirkness EF, Safa P, Hales TG. (2003) Introduction of the 5-HT3B subunit alters the functional properties of 5-HT3 receptors native to neuroblastoma cells. Neuropharmacology, 44 (2): 214-23. [PMID:12623220]
47. Sun H, McCardy EA, Machu TK, Blanton MP. (1999) Characterization of interaction of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester with Torpedo californica nicotinic acetylcholine receptor and 5-hydroxytryptamine3 receptor. J Pharmacol Exp Ther, 290 (1): 129-35. [PMID:10381768]
48. Thompson AJ, Duke RK, Lummis SC. (2011) Binding sites for bilobalide, diltiazem, ginkgolide, and picrotoxinin at the 5-HT3 receptor. Mol Pharmacol, 80 (1): 183-90. [PMID:21505038]
49. Thompson AJ, Jarvis GE, Duke RK, Johnston GA, Lummis SC. (2011) Ginkgolide B and bilobalide block the pore of the 5-HT(3) receptor at a location that overlaps the picrotoxin binding site. Neuropharmacology, 60 (2-3): 488-95. [PMID:21059362]
50. Thompson AJ, Lummis SC. (2006) 5-HT3 receptors. Curr Pharm Des, 12 (28): 3615-30. [PMID:17073663]
51. Thompson AJ, Lummis SC. (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets, 11 (4): 527-40. [PMID:17373882]
52. Thompson AJ, Lummis SC. (2008) Antimalarial drugs inhibit human 5-HT(3) and GABA(A) but not GABA(C) receptors. Br J Pharmacol, 153 (8): 1686-96. [PMID:18311193]
53. Thompson AJ, Price KL, Lummis SC. (2011) Cysteine modification reveals which subunits form the ligand binding site in human heteromeric 5-HT3AB receptors. J Physiol (Lond.), 589 (Pt 17): 4243-57. [PMID:21708905]
54. Tzvetkov MV, Meineke C, Oetjen E, Hirsch-Ernst K, Brockmöller J. (2007) Tissue-specific alternative promoters of the serotonin receptor gene HTR3B in human brain and intestine. Gene, 386 (1-2): 52-62. [PMID:17010535]
55. Walstab J, Hammer C, Lasitschka F, Möller D, Connolly CN, Rappold G, Brüss M, Bönisch H, Niesler B. (2010) RIC-3 exclusively enhances the surface expression of human homomeric 5-hydroxytryptamine type 3A (5-HT3A) receptors despite direct interactions with 5-HT3A, -C, -D, and -E subunits. J Biol Chem, 285 (35): 26956-65. [PMID:20522555]
56. Walstab J, Rappold G, Niesler B. (2010) 5-HT(3) receptors: role in disease and target of drugs. Pharmacol Ther, 128 (1): 146-69. [PMID:20621123]
Subcommittee members:
John A. Peters (Co-chairperson)
Tim G. Hales (Co-chairperson)
Nicholas M. Barnes
Sarah C. R. Lummis
Beate Niesler |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol. 180 Suppl 2:S145-S222.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Quantitative data in the table refer to homo-oligomeric assemblies of the human 5-HT3A subunit, or the receptor native to human tissues. Significant changes introduced by co-expression of the 5-HT3B subunit are indicated in parenthesis. Although not a selective antagonist, methadone displays multimodal and subunit-dependent antagonism of 5-HT3 receptors [12]. Similarly, TMB-8, diltiazem, picrotoxin, bilobalide and ginkgolide B are not selective for 5-HT3 receptors (e.g.[49]). The anti-malarial drugs mefloquine and quinine exert a modestly more potent block of 5-HT3A versus 5-HT3AB receptor-mediated responses [52]. Known better as a partial agonist of nicotinic acetylcholine α4β2 receptors, varenicline is also an agonist of the 5-HT3A receptor [30]. Human [7,32], rat [22], mouse [31], guinea-pig [28] ferret [34] and canine [24] orthologues of the 5-HT3A receptor subunit have been cloned that exhibit intraspecies variations in receptor pharmacology. Notably, most ligands display significantly reduced affinities at the guinea-pig 5-HT3 receptor in comparison with other species. In addition to the agents listed in the table, native and recombinant 5-HT3 receptors are subject to allosteric modulation by extracellular divalent cations, alcohols, several general anaesthetics and 5-hydroxy- and halide-substituted indoles (see reviews [2-3,41,50-51,56]).