5-HT3 receptors: Introduction

General

The 5-hydroxytryptamine type-3 (5-HT3) receptor was first described as the ‘M’ receptor in a seminal analysis of the contractile action of 5-HT upon the guinea-pig isolated ileum preparation [26]. The current appellation was applied following the reclassification of 5-HT receptors performed by Bradley et al. [9] and was formally endorsed by NC-IUPHAR in 1994 [29]. Unlike all other vertebrate 5-HT receptors, which are G-protein coupled [29-30], the 5-HT3 receptor is a cation-selective ligand-gated ion channel of the pentameric ligand-gated ion channel (pLGIC) family that includes the nicotinic acetylcholine, γ-aminobutyric acid-type-A and strychnine-sensitive glycine receptors and a less extensively studied Zn2+-activated ion channel [3,18,21,33,35,38,46,55]. The activation of neuronal 5-HT3 receptors causes the depolarization of presynaptic nerve endings resulting in modulation of the release of several neurotransmitters including γ-aminobutyric acid, glutamate, cholecystokinin, acetylcholine, dopamine noradrenaline, 5-HT and substance P [13,23,42]. In the lateral amygdala and neocortex, postsynaptic 5-HT3 receptors contribute to fast excitatory neurotransmission [25,53]. The native channel conducts monovalent metal cations in a non-selective manner [33,53] and is also permeable to Ca2+ [62-63], although estimates of relative permeability to Ca2+ vary in the literature and may reflect differences in the subunit composition of the receptor [17,41].

Structure

In common with all members of the superfamily, 5-HT3 receptors comprise a pentameric assembly of subunits that surround a central, water-filled, transmembrane ion channel [5,8,27]. Individual subunits (with the exception of certain splice variants) contain a large extracellular N-terminal domain that embodies components of the ligand binding site located at the subunit interfaces. The four transmembrane domains (M1-M4) are connected by intracellular (M1-M2 and M3-M4) and extracellular (M2-M3) loops, of which the M3-M4 linker is the most extensive, and the polypeptide terminates in a short extracellular C-terminus [3,45-46,56]. M2 and short flanking sequences contribute to the lining of the ion channel [13,45] and there is evidence that a region of the M3-M4 loop also contributes to the permeation pathway [3,19,45], although this region is not essential for receptor function, or mono-valent cation, versus -anion, selectivity [36]. Five human 5-HT3 receptor subunits, termed 5-HT3A [6,17], 5-HT3B [22,39], 5-HT3C [22,43], 5-HT3D [22,43], and 5-HT3E [22,43] have been cloned, but only homo-pentamers of the 5-HT3A subunit [i.e. (5HT3A)5] and heteromers of the 5-HT3A and 5-HT3B subunit [i.e. 5-HT3AB] that in vitro assemble with the stoichiometry (5-HT3A)2(5-HT3B)3 [5] have been sufficiently characterised to be tabulated at present. In addition, although evidence has recently been adduced for the co-assembly of 5-HT3C, 5-HT3D and 5-HT3E with 5-HT3A subunits in vitro [28,44], there is no published evidence that the HTR3C, HTR3D and HTR3E genes are translated to protein in vivo. Further potential diversity within the 5-HT3 receptor class occurs with the possibility of alternatively spliced transcripts of the human HTR3A [10,28], HTR3C [28], HTR3D [28]and HTR3E [28,44] genes and single nucleotide polymorphisms that impact upon receptor expression and/or function [32,32,60]. In addition, distinct isoforms of the 5-HT3B subunit may be produced by activation of alternative promoters in the HTR3B gene [57].

Pharmacology

Responses to 5-HT attributable to 5-HT3 receptor activation can be distinguished from those mediated by G-protein-coupled 5-HT receptors by numerous selective and competitively acting antagonist compounds. These include bemesetron (MDL72222 [24]), tropisetron (ICS205-930 [47], ondansetron (GR38032F [12]), zacopride (AHR11190B [51]), dolasetron (MDL73147 [7]), granisetron (BRL43694 [50]), cilansetron [58], ramosetron (YM060 [1]) and alosetron (GR68755 [14]). Palonosetron (RS 25259-197 [61] ) has been described as an allosteric antagonist [48]. Such agents typically bind to native and recombinant 5-HT3 receptors with high affinity [56] and good selectivity. However, zacopride also activates 5-HT4 receptors and at high concentrations tropisetron acts as an antagonist of 5-HT4 receptors. The in vitro pharmacology of 5-HT3 receptor antagonists is described in detail in several reviews [4,15,56]. Activation of 5-HT3 receptors can be achieved, with varying degrees of selectivity, by compounds that include 2-methyl-5-HT [47], SR57227 (4-amino-(6-chloro-2-pyridyl)-1-piperidine hydrochloride), which crosses the blood-brain barrier [2], and a range of arylbiguanides, the most extensively studied of which are 1-phenylbiguanide and its 3-chloro-substitued derivative, meta-chlorophenylbiguanide [40]. The potency and efficacy of individual compounds relative to 5-HT differs considerably between experimental preparations (see below). Differences in the degree of ‘receptor reserve’ inherent in some experimental paradigms and intra-species variation in the pharmacological properties of the 5-HT3 receptor are confounding issues in this respect [6,11,34,37,39,41]. Recombinant 5-HT3A and 5-HT3AB receptors differ profoundly in their biophysical properties [22,46], but the inclusion of the 5-HT3B subunit has only a minor influence upon the affinity of most 5-HT3 receptor selective ligands that have been examined [3,17,46,59] (however please see [22]). Similarly, the assembly of 5-HT3A with 5-HT3C, 5-HT3D, or 5-HT3E subunits does not cause a significant change in ligand binding profile [28,44]. Limited pharmacological discrimination between 5-HT3A and 5-HT3AB receptors can be made with the non-selective compounds (+)-tubocurarine [17], picrotoxin [16], methadone [20], and some antimalarial drugs [54]. 5-HT3A and 5-HT3AB receptors differ in their allosteric regulation by some general anaesthetic agents [52], small alcohols [49] and indoles [31].

Classic in vitro preparations used in the development of 5-HT3 receptor selective ligands and to study the characteristics of native 5-HT3 receptors include the guinea-pig isolated ileum [12,24,26,47,50], rat and guinea-pig isolated vagus nerve [12], isolated superior cervical and nodose ganglia of several species [41] and the rabbit isolated heart [24,50]. In addition, numerous clonal cell lines also express a 5-HT3 receptor [33,38,53] and represent a source from which the protein can be purified [8]. Antagonist potency in vivo can be assessed by blockade of the Bezold-Jarisch effect of intravenous 5-HT (transient bradycardia and hypotension mediated by the vagus nerve) delivered as a bolus to the anaesthetised rat [24]. Functional assays applicable to recombinant 5-HT3 receptors are detailed in the tables.

References

Show »

1. Akuzawa S, Miyake A, Miyata K, Fukutomi H. (1996) Comparison of [3H]YM060 binding to native and cloned rat 5-HT3 receptors. Eur J Pharmacol, 296 (2): 227-30. [PMID:8838461]

2. Bachy A, Héaulme M, Giudice A, Michaud JC, Lefevre IA, Souilhac J, Manara L, Emerit MB, Gozlan H, Hamon M et al.. (1993) SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol, 237 (2-3): 299-309. [PMID:7689975]

3. Barnes NM, Hales TG, Lummis SC, Peters JA. (2009) The 5-HT3 receptor--the relationship between structure and function. Neuropharmacology, 56 (1): 273-84. [PMID:18761359]

4. Barnes NM, Sharp T. (1999) A review of central 5-HT receptors and their function. Neuropharmacology, 38 (8): 1083-152. [PMID:10462127]

5. Barrera NP, Herbert P, Henderson RM, Martin IL, Edwardson JM. (2005) Atomic force microscopy reveals the stoichiometry and subunit arrangement of 5-HT3 receptors. Proc Natl Acad Sci USA, 102 (35): 12595-600. [PMID:16116092]

6. Belelli D, Balcarek JM, Hope AG, Peters JA, Lambert JJ, Blackburn TP. (1995) Cloning and functional expression of a human 5-hydroxytryptamine type 3AS receptor subunit. Mol Pharmacol, 48 (6): 1054-62. [PMID:8848005]

7. Boeijinga PH, Galvan M, Baron BM, Dudley MW, Siegel BW, Slone AL. (1992) Characterization of the novel 5-HT3 antagonists MDL 73147EF (dolasetron mesilate) and MDL 74156 in NG108-15 neuroblastoma x glioma cells. Eur J Pharmacol, 219 (1): 9-13. [PMID:1397053]

8. Boess FG, Beroukhim R, Martin IL. (1995) Ultrastructure of the 5-hydroxytryptamine3 receptor. J Neurochem, 64 (3): 1401-5. [PMID:7861173]

9. Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PP, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR. (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology, 25 (6): 563-76. [PMID:2875415]

10. Brüss M, Barann M, Hayer-Zillgen M, Eucker T, Göthert M, Bönisch H. (2000) Modified 5-HT3A receptor function by co-expression of alternatively spliced human 5-HT3A receptor isoforms. Naunyn Schmiedebergs Arch Pharmacol, 362 (4-5): 392-401. [PMID:11111833]

11. Butler A, Elswood CJ, Burridge J, Ireland SJ, Bunce KT, Kilpatrick GJ, Tyers MB. (1990) The pharmacological characterization of 5-HT3 receptors in three isolated preparations derived from guinea-pig tissues. Br J Pharmacol, 101 (3): 591-8. [PMID:2076479]

12. Butler A, Hill JM, Ireland SJ, Jordan CC, Tyers MB. (1988) Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br J Pharmacol, 94 (2): 397-412. [PMID:2969267]

13. Chameau P, van Hooft JA. (2006) Serotonin 5-HT(3) receptors in the central nervous system. Cell Tissue Res, 326 (2): 573-81. [PMID:16826372]

14. Clayton NM, Sargent R, Butler A, Gale J, Maxwell MP, Hunt AA, Barrett VJ, Cambridge D, Bountra C, Humphrey PP. (1999) The pharmacological properties of the novel selective 5-HT3 receptor antagonist, alosetron, and its effects on normal and perturbed small intestinal transit in the fasted rat. Neurogastroenterol Motil, 11 (3): 207-17. [PMID:10354345]

15. Costall B, Naylor RJ. (2004) 5-HT3 receptors. Curr Drug Targets CNS Neurol Disord, 3 (1): 27-37. [PMID:14965242]

16. Das P, Dillon GH. (2005) Molecular determinants of picrotoxin inhibition of 5-hydroxytryptamine type 3 receptors. J Pharmacol Exp Ther, 314 (1): 320-8. [PMID:15814570]

17. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF. (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature, 397 (6717): 359-63. [PMID:9950429]

18. Davies PA, Wang W, Hales TG, Kirkness EF. (2003) A novel class of ligand-gated ion channel is activated by Zn2+. J Biol Chem, 278 (2): 712-7. [PMID:12381728]

19. Deeb TZ, Carland JE, Cooper MA, Livesey MR, Lambert JJ, Peters JA, Hales TG. (2007) Dynamic modification of a mutant cytoplasmic cysteine residue modulates the conductance of the human 5-HT3A receptor. J Biol Chem, 282 (9): 6172-82. [PMID:17200121]

20. Deeb TZ, Sharp D, Hales TG. (2009) Direct subunit-dependent multimodal 5-hydroxytryptamine3 receptor antagonism by methadone. Mol Pharmacol, 75 (4): 908-17. [PMID:19131665]

21. Derkach V, Surprenant A, North RA. (1989) 5-HT3 receptors are membrane ion channels. Nature, 339 (6227): 706-9. [PMID:2472553]

22. Dubin AE, Huvar R, D'Andrea MR, Pyati J, Zhu JY, Joy KC, Wilson SJ, Galindo JE, Glass CA, Luo L et al.. (1999) The pharmacological and functional characteristics of the serotonin 5-HT(3A) receptor are specifically modified by a 5-HT(3B) receptor subunit. J Biol Chem, 274 (43): 30799-810. [PMID:10521471]

23. Fink KB, Göthert M. (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev, 59 (4): 360-417. [PMID:18160701]

24. Fozard JR. (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn Schmiedebergs Arch Pharmacol, 326 (1): 36-44. [PMID:6472484]

25. Férézou I, Cauli B, Hill EL, Rossier J, Hamel E, Lambolez B. (2002) 5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons. J Neurosci, 22 (17): 7389-97. [PMID:12196560]

26. GADDUM JH, PICARELLI ZP. (1957) Two kinds of tryptamine receptor. Br J Pharmacol Chemother, 12 (3): 323-8. [PMID:13460238]

27. Green T, Stauffer KA, Lummis SC. (1995) Expression of recombinant homo-oligomeric 5-hydroxytryptamine3 receptors provides new insights into their maturation and structure. J Biol Chem, 270 (11): 6056-61. [PMID:7890738]

28. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM, Yusaf SP et al.. (2009) Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function. J Neurochem, 108 (2): 384-96. [PMID:19012743]

29. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP. (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev, 46 (2): 157-203. [PMID:7938165]

30. Hoyer D, Martin G. (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology, 36 (4-5): 419-28. [PMID:9225265]

31. Hu XQ, Peoples RW. (2008) The 5-HT3B subunit confers spontaneous channel opening and altered ligand properties of the 5-HT3 receptor. J Biol Chem, 283 (11): 6826-31. [PMID:18187416]

32. Krzywkowski K, Jensen AA, Connolly CN, Bräuner-Osborne H. (2007) Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet Genomics, 17 (4): 255-66. [PMID:17496724]

33. Lambert JJ, Peters JA, Hales TG, Dempster J. (1989) The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol, 97 (1): 27-40. [PMID:2720311]

34. Lankiewicz S, Lobitz N, Wetzel CH, Rupprecht R, Gisselmann G, Hatt H. (1998) Molecular cloning, functional expression, and pharmacological characterization of 5-hydroxytryptamine3 receptor cDNA and its splice variants from guinea pig. Mol Pharmacol, 53 (2): 202-12. [PMID:9463477]

35. Lester HA, Dibas MI, Dahan DS, Leite JF, Dougherty DA. (2004) Cys-loop receptors: new twists and turns. Trends Neurosci, 27 (6): 329-36. [PMID:15165737]

36. Livesey MR, Cooper MA, Deeb TZ, Carland JE, Kozuska J, Hales TG, Lambert JJ, Peters JA. (2008) Structural determinants of Ca2+ permeability and conduction in the human 5-hydroxytryptamine type 3A receptor. J Biol Chem, 283 (28): 19301-13. [PMID:18474595]

37. Mair ID, Lambert JJ, Yang J, Dempster J, Peters JA. (1998) Pharmacological characterization of a rat 5-hydroxytryptamine type3 receptor subunit (r5-HT3A(b)) expressed in Xenopus laevis oocytes. Br J Pharmacol, 124 (8): 1667-74. [PMID:9756382]

38. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science, 254 (5030): 432-7. [PMID:1718042]

39. Miyake A, Mochizuki S, Takemoto Y, Akuzawa S. (1995) Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol, 48 (3): 407-16. [PMID:7565620]

40. Morain P, Abraham C, Portevin B, De Nanteuil G. (1994) Biguanide derivatives: agonist pharmacology at 5-hydroxytryptamine type 3 receptors in vitro. Mol Pharmacol, 46 (4): 732-42. [PMID:7969053]

41. Newberry NR, Cheshire SH, Gilbert MJ. (1991) Evidence that the 5-HT3 receptors of the rat, mouse and guinea-pig superior cervical ganglion may be different. Br J Pharmacol, 102 (3): 615-20. [PMID:1364827]

42. Nichols RA, Mollard P. (1996) Direct observation of serotonin 5-HT3 receptor-induced increases in calcium levels in individual brain nerve terminals. J Neurochem, 67 (2): 581-92. [PMID:8764583]

43. Niesler B, Frank B, Kapeller J, Rappold GA. (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene, 310: 101-11. [PMID:12801637]

44. Niesler B, Walstab J, Combrink S, Möller D, Kapeller J, Rietdorf J, Bönisch H, Göthert M, Rappold G, Brüss M. (2007) Characterization of the novel human serotonin receptor subunits 5-HT3C,5-HT3D, and 5-HT3E. Mol Pharmacol, 72 (1): 8-17. [PMID:17392525]

45. Peters JA, Hales TG, Lambert JJ. (2005) Molecular determinants of single-channel conductance and ion selectivity in the Cys-loop family: insights from the 5-HT3 receptor. Trends Pharmacol Sci, 26 (11): 587-94. [PMID:16194573]

46. Reeves DC, Lummis SC. (2002) The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel (review). Mol Membr Biol, 19 (1): 11-26. [PMID:11989819]

47. Richardson BP, Engel G, Donatsch P, Stadler PA. (1985) Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature, 316 (6024): 126-31. [PMID:3839291]

48. Rojas C, Stathis M, Thomas AG, Massuda EB, Massuda EB, Alt J, Zhang J, Rubenstein E, Rubenstein E, Sebastiani S, Cantoreggi S, Snyder SH, Slusher B. (2008) Palonosetron exhibits unique molecular interactions with the 5-HT3 receptor. Anesth Analg, 107 (2): 469-78. [PMID:18633025]

49. Rüsch D, Musset B, Wulf H, Schuster A, Raines DE. (2007) Subunit-dependent modulation of the 5-hydroxytryptamine type 3 receptor open-close equilibrium by n-alcohols. J Pharmacol Exp Ther, 321 (3): 1069-74. [PMID:17360702]

50. Sanger GJ, Nelson DR. (1989) Selective and functional 5-hydroxytryptamine3 receptor antagonism by BRL 43694 (granisetron). Eur J Pharmacol, 159 (2): 113-24. [PMID:2540014]

51. Smith WW, Sancilio LF, Owera-Atepo JB, Naylor RJ, Lambert L. (1988) Zacopride, a potent 5-HT3 antagonist. J Pharm Pharmacol, 40 (4): 301-2. [PMID:2900319]

52. Solt K, Stevens RJ, Davies PA, Raines DE. (2005) General anesthetic-induced channel gating enhancement of 5-hydroxytryptamine type 3 receptors depends on receptor subunit composition. J Pharmacol Exp Ther, 315 (2): 771-6. [PMID:16081679]

53. Sugita S, Shen KZ, North RA. (1992) 5-hydroxytryptamine is a fast excitatory transmitter at 5-HT3 receptors in rat amygdala. Neuron, 8 (1): 199-203. [PMID:1346089]

54. Thompson AJ, Lochner M, Lummis SC. (2007) The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors. Br J Pharmacol, 151 (5): 666-77. [PMID:17502851]

55. Thompson AJ, Lummis SC. (2006) 5-HT3 receptors. Curr Pharm Des, 12 (28): 3615-30. [PMID:17073663]

56. Thompson AJ, Lummis SC. (2007) The 5-HT3 receptor as a therapeutic target. Expert Opin Ther Targets, 11 (4): 527-40. [PMID:17373882]

57. Tzvetkov MV, Meineke C, Oetjen E, Hirsch-Ernst K, Brockmöller J. (2007) Tissue-specific alternative promoters of the serotonin receptor gene HTR3B in human brain and intestine. Gene, 386 (1-2): 52-62. [PMID:17010535]

58. van Wijngaarden I, Hamminga D, van Hes R, Standaar PJ, Tipker J, Tulp MT, Mol F, Olivier B, de Jonge A. (1993) Development of high-affinity 5-HT3 receptor antagonists. Structure-affinity relationships of novel 1,7-annelated indole derivatives. J Med Chem, 36 (23): 3693-9. [PMID:8246239]

59. Walstab J, Combrink S, Brüss M, Göthert M, Niesler B, Bönisch H. (2007) Aequorin luminescence-based assay for 5-hydroxytryptamine (serotonin) type 3 receptor characterization. Anal Biochem, 368 (2): 185-92. [PMID:17617370]

60. Walstab J, Hammer C, Bönisch H, Rappold G, Niesler B. (2008) Naturally occurring variants in the HTR3B gene significantly alter properties of human heteromeric 5-hydroxytryptamine-3A/B receptors. Pharmacogenet Genomics, 18 (9): 793-802. [PMID:18698232]

61. Wong EH, Clark R, Leung E, Loury D, Bonhaus DW, Jakeman L, Parnes H, Whiting RL, Eglen RM. (1995) The interaction of RS 25259-197, a potent and selective antagonist, with 5-HT3 receptors, in vitro. Br J Pharmacol, 114 (4): 851-9. [PMID:7773546]

62. Yang J. (1990) Ion permeation through 5-hydroxytryptamine-gated channels in neuroblastoma N18 cells. J Gen Physiol, 96 (6): 1177-98. [PMID:2286832]

63. Yang J, Mathie A, Hille B. (1992) 5-HT3 receptor channels in dissociated rat superior cervical ganglion neurons. J Physiol (Lond.), 448: 237-56. [PMID:1375636]

How to cite this page

To cite this family introduction, please use the following:

Database page citation (select format):