Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
The nomenclature of the Adrenoceptors has been agreed by the NC-IUPHAR Subcommittee on Adrenoceptors [22,55].
Adrenoceptors, α1
The three α1-adrenoceptor subtypes α1A, α1B and α1D are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. -(-)phenylephrine, methoxamine and cirazoline are agonists and prazosin and doxazosin antagonists considered selective for α1- relative to α2-adrenoceptors. [3H]Prazosin and HEAT (BE2254) (BE2254) are relatively selective radioligands. S(+)-niguldipine also has high affinity for L-type Ca2+ channels. Fluorescent derivatives of prazosin (Bodipy FLprazosin- QAPB) are used to examine cellular localisation of α1-adrenoceptors. α1-Adrenoceptor agonists are used as nasal decongestants; antagonists to treat symptoms of benign prostatic hyperplasia (alfuzosin, doxazosin, terazosin, tamsulosin and silodosin, with the last two compounds being α1A-adrenoceptor selective and claiming to relax bladder neck tone with less hypotension); and to a lesser extent hypertension (doxazosin, terazosin). The α1- and β2-adrenoceptor antagonist carvedilol is used to treat congestive heart failure, although the contribution of α1-adrenoceptor blockade to the therapeutic effect is unclear. Several anti-depressants and anti-psychotic drugs are α1-adrenoceptor antagonists contributing to side effects such as orthostatic hypotension.
Adrenoceptors, α2
The three α2-adrenoceptor subtypes α2A, α2B and α2C are activated by (-)-adrenaline and with lower potency by (-)-noradrenaline. Brimonidine (UK14304) and talipexole are agonists and rauwolscine and yohimbine antagonists selective for α2- relative to α1-adrenoceptors. [3H]Rauwolscine, [3H]brimonidine (UK14304) and [3H]RX821002 are relatively selective radioligands. There are species variations in the pharmacology of the α2A-adrenoceptor. Multiple mutations of α2-adrenoceptors have been described, some associated with alterations in function. Presynaptic α2-adrenoceptors regulate many functions in the nervous system. The α2-adrenoceptor agonists clonidine, guanabenz and brimonidine (UK14304) affect central baroreflex control (hypotension and bradycardia), induce hypnotic effects and analgesia, and modulate seizure activity and platelet aggregation. Clonidine is an anti-hypertensive (relatively little used) and counteracts opioid withdrawal. Dexmedetomidine (also xylazine) is increasingly used as a sedative and analgesic in human [14] and veterinary medicine and has sympatholytic and anxiolytic properties. The α2-adrenoceptor antagonist mirtazapine is used as an anti-depressant. The α2B subtype appears to be involved in neurotransmission in the spinal cord and α2C in regulating catecholamine release from adrenal chromaffin cells. Although subtype-selective antagonists have been developed, none are used clinically and they remain experimental tools.
Adrenoceptors, β
The three β-adrenoceptor subtypes β1, β2 and β3 are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. Isoprenaline is selective for β-adrenoceptors relative to α1- and α2-adrenoceptors, while propranolol (pKi 8.2-9.2) and cyanopindolol (pKi 10.0-11.0) are relatively selective antagonists for β1- and β2- relative to β3-adrenoceptors. (-)-Noradrenaline, xamoterol and (-)-Ro 363 show selectivity for β1- relative to β2-adrenoceptors. Pharmacological differences exist between human and mouse β3-adrenoceptors, and the 'rodent selective' agonists BRL 37344 and CL316243 have low efficacy at the human β3-adrenoceptor whereas CGP 12177 (low potency) and L 755507 activate human β3-adrenoceptors [88]. β3-Adrenoceptors are resistant to blockade by propranolol, but can be blocked by high concentrations of bupranolol. SR59230A has reasonably high affinity at β3-adrenoceptors, but does not discriminate between the three β- subtypes [84] whereas L-748337 is more selective. [125I]-cyanopindolol, [125I]-hydroxy benzylpindolol and [3H]-alprenolol are high affinity radioligands that label β1- and β2- adrenoceptors and β3-adrenoceptors can be labelled with higher concentrations (nM) of [125I]-cyanopindolol together with β1- and β2-adrenoceptor antagonists. Fluorescent ligands such as BODIPY-TMR-CGP12177 can be used to track β-adrenoceptors at the cellular level [8]. Somewhat selective β1-adrenoceptor agonists (denopamine, dobutamine) are used short term to treat cardiogenic shock but, chronically, reduce survival. β1-Adrenoceptor-preferring antagonists are used to treat cardiac arrhythmias (atenolol, bisoprolol, esmolol) and cardiac failure (metoprolol, nebivolol) but also in combination with other treatments to treat hypertension (atenolol, betaxolol, bisoprolol, metoprolol and nebivolol) [146]. Cardiac failure is also treated with carvedilol that blocks β1- and β2-adrenoceptors, as well as α1-adrenoceptors. Short (salbutamol, terbutaline) and long (formoterol, salmeterol) acting β2-adrenoceptor-selective agonists are powerful bronchodilators used to treat respiratory disorders. Many first generation β-adrenoceptor antagonists (propranolol) block both β1- and β2-adrenoceptors and there are no β2-adrenoceptor-selective antagonists used therapeutically. The β3-adrenoceptor agonist mirabegron is used to control overactive bladder syndrome. There is evidence to suggest that β-adrenoceptor antagonists can reduce metastasis in certain types of cancer [56].
α1A-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
α1B-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
α1D-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
α2A-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
α2B-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
α2C-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
β1-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
β2-adrenoceptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
β3-adrenoceptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Baker JG, Hill SJ, Summers RJ. (2011) Evolution of β-blockers: from anti-anginal drugs to ligand-directed signalling. Trends Pharmacol Sci, 32 (4): 227-34. [PMID:21429598]
Brodde OE. (2008) Beta-1 and beta-2 adrenoceptor polymorphisms: functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther, 117 (1): 1-29. [PMID:17916379]
* Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo Jr RR, Trendelenburg U. (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev, 46 (2): 121-36. [PMID:7938162]
Cotecchia S. (2010) The α1-adrenergic receptors: diversity of signaling networks and regulation. J Recept Signal Transduct Res, 30 (6): 410-9. [PMID:20954794]
* Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ. (2010) Ligand-directed signalling at beta-adrenoceptors. Br J Pharmacol, 159 (5): 1022-38. [PMID:20132209]
Gilsbach R, Hein L. (2012) Are the pharmacology and physiology of α₂ adrenoceptors determined by α₂-heteroreceptors and autoreceptors respectively?. Br J Pharmacol, 165 (1): 90-102. [PMID:21658028]
Gyires K, Zádori ZS, Török T, Mátyus P. (2009) alpha(2)-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int, 55 (7): 447-53. [PMID:19477210]
Hein P, Michel MC. (2007) Signal transduction and regulation: are all alpha1-adrenergic receptor subtypes created equal?. Biochem Pharmacol, 73 (8): 1097-106. [PMID:17141737]
Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo Jr RR. (1995) International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev, 47 (2): 267-70. [PMID:7568329]
* Jensen BC, O'Connell TD, Simpson PC. (2011) Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol, 51 (4): 518-28. [PMID:21118696]
Kaumann AJ, Molenaar P. (2008) The low-affinity site of the beta1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther, 118 (3): 303-36. [PMID:18501968]
* Kobilka BK. (2011) Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci, 32 (4): 213-8. [PMID:21414670]
* Langer SZ. (2015) α2-Adrenoceptors in the treatment of major neuropsychiatric disorders. Trends Pharmacol Sci, 36 (4): 196-202. [PMID:25771972]
McGrath JC. (2015) Localization of α-adrenoceptors: JR Vane Medal Lecture. Br J Pharmacol, 172 (5): 1179-94. [PMID:25377869]
Michel MC, Harding SE, Bond RA. (2011) Are there functional β₃-adrenoceptors in the human heart?. Br J Pharmacol, 162 (4): 817-22. [PMID:20735409]
Michel MC, Ochodnicky P, Homma Y, Igawa Y. (2011) β-adrenoceptor agonist effects in experimental models of bladder dysfunction. Pharmacol Ther, 131 (1): 40-9. [PMID:21510978]
* Michel MC, Seifert R. (2015) Selectivity of pharmacological tools: implications for use in cell physiology. A review in the theme: Cell signaling: proteins, pathways and mechanisms. Am J Physiol, Cell Physiol, 308 (7): C505-20. [PMID:25631871]
Nishimune A, Yoshiki H, Uwada J, Anisuzzaman AS, Umada H, Muramatsu I. (2012) Phenotype pharmacology of lower urinary tract α(1)-adrenoceptors. Br J Pharmacol, 165 (5): 1226-34. [PMID:21745191]
Perez DM. (2007) Structure-function of alpha1-adrenergic receptors. Biochem Pharmacol, 73 (8): 1051-62. [PMID:17052695]
Philipp M, Hein L. (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther, 101 (1): 65-74. [PMID:14729393]
Schönegge AM, Gallion J, Picard LP, Wilkins AD, Le Gouill C, Audet M, Stallaert W, Lohse MJ, Kimmel M, Lichtarge O et al.. (2017) Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity. Nat Commun, 8 (1): 2169. [PMID:29255305]
Vasudevan NT, Mohan ML, Goswami SK, Naga Prasad SV. (2011) Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle, 10 (21): 3684-91. [PMID:22041711]
Walker JK, Penn RB, Hanania NA, Dickey BF, Bond RA. (2011) New perspectives regarding β(2) -adrenoceptor ligands in the treatment of asthma. Br J Pharmacol, 163 (1): 18-28. [PMID:21175591]
1. Alikhani V, Beer D, Bentley D, Bruce I, Cuenoud BM, Fairhurst RA, Gedeck P, Haberthuer S, Hayden C, Janus D et al.. (2004) Long-chain formoterol analogues: an investigation into the effect of increasing amino-substituent chain length on the beta2-adrenoceptor activity. Bioorg Med Chem Lett, 14 (18): 4705-10. [PMID:15324892]
2. Aparici M, Gómez-Angelats M, Vilella D, Otal R, Carcasona C, Viñals M, Ramos I, Gavaldà A, De Alba J, Gras J et al.. (2012) Pharmacological characterization of abediterol, a novel inhaled β(2)-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J Pharmacol Exp Ther, 342 (2): 497-509. [PMID:22588259]
3. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP et al.. (2013) Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Med Chem Lett, 4 (10): 1005-1010. [PMID:24454993]
4. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html
5. Baker JG. (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol, 144 (3): 317-22. [PMID:15655528]
6. Baker JG. (2010) A full pharmacological analysis of the three turkey β-adrenoceptors and comparison with the human β-adrenoceptors. PLoS ONE, 5 (11): e15487. [PMID:21152092]
7. Baker JG. (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol, 160 (5): 1048-61. [PMID:20590599]
8. Baker JG, Gardiner SM, Woolard J, Fromont C, Jadhav GP, Mistry SN, Thompson KSJ, Kellam B, Hill SJ, Fischer PM. (2017) Novel selective β1-adrenoceptor antagonists for concomitant cardiovascular and respiratory disease. FASEB J, 31 (7): 3150-3166. [PMID:28400472]
9. Baker JG, Hall IP, Hill SJ. (2002) Pharmacological characterization of CGP 12177 at the human beta(2)-adrenoceptor. Br J Pharmacol, 137 (3): 400-8. [PMID:12237261]
10. Baker JG, Hall IP, Hill SJ. (2003) Agonist and inverse agonist actions of beta-blockers at the human beta 2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol, 64 (6): 1357-69. [PMID:14645666]
11. Baker JG, Hall IP, Hill SJ. (2003) Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses. Mol Pharmacol, 64 (3): 679-88. [PMID:12920204]
12. Baker JG, Hall IP, Hill SJ. (2003) Pharmacology and direct visualisation of BODIPY-TMR-CGP: a long-acting fluorescent beta2-adrenoceptor agonist. Br J Pharmacol, 139 (2): 232-42. [PMID:12770928]
13. Baker JG, Proudman RG, Hill SJ. (2015) Salmeterol's extreme β2 selectivity is due to residues in both extracellular loops and transmembrane domains. Mol Pharmacol, 87 (1): 103-20. [PMID:25324048]
14. Barends CR, Absalom A, van Minnen B, Vissink A, Visser A. (2017) Dexmedetomidine versus Midazolam in Procedural Sedation. A Systematic Review of Efficacy and Safety. PLoS One, 12 (1): e0169525. [PMID:28107373]
15. Battram C, Charlton SJ, Cuenoud B, Dowling MR, Fairhurst RA, Farr D, Fozard JR, Leighton-Davies JR, Lewis CA, McEvoy L et al.. (2006) In vitro and in vivo pharmacological characterization of 5-[(R)-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quinolin-2-one (indacaterol), a novel inhaled beta(2) adrenoceptor agonist with a 24-h duration of action. J Pharmacol Exp Ther, 317 (2): 762-70. [PMID:16434564]
16. Beattie D, Beer D, Bradley ME, Bruce I, Charlton SJ, Cuenoud BM, Fairhurst RA, Farr D, Fozard JR, Janus D et al.. (2012) An investigation into the structure-activity relationships associated with the systematic modification of the β(2)-adrenoceptor agonist indacaterol. Bioorg Med Chem Lett, 22 (19): 6280-5. [PMID:22932315]
17. Blin N, Camoin L, Maigret B, Strosberg AD. (1993) Structural and conformational features determining selective signal transduction in the beta 3-adrenergic receptor. Mol Pharmacol, 44 (6): 1094-104. [PMID:7903415]
18. Blue DR, Daniels DV, Gever JR, Jett MF, O'Yang C, Tang HM, Williams TJ, Ford AP. (2004) Pharmacological characteristics of Ro 115-1240, a selective alpha1A/1L-adrenoceptor partial agonist: a potential therapy for stress urinary incontinence. BJU Int, 93 (1): 162-70. [PMID:14678390]
19. Bouyssou T, Casarosa P, Naline E, Pestel S, Konetzki I, Devillier P, Schnapp A. (2010) Pharmacological characterization of olodaterol, a novel inhaled beta2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models. J Pharmacol Exp Ther, 334 (1): 53-62. [PMID:20371707]
20. Brucker BM, King J, Mudd Jr PN, McHale K. (2022) Selectivity and Maximum Response of Vibegron and Mirabegron for β3-Adrenergic Receptors. Curr Ther Res Clin Exp, 96: 100674. [PMID:35693456]
21. Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW. (1992) Pharmacological characteristics of alpha 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol, 42: 1-5. [PMID:1353247]
22. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo Jr RR, Trendelenburg U. (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev, 46 (2): 121-36. [PMID:7938162]
23. Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE. (1999) Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther, 290 (2): 649-55. [PMID:10411574]
24. Carroll WA, Sippy KB, Esbenshade TA, Buckner SA, Hancock AA, Meyer MD. (2001) Two novel and potent 3-[(o-methoxyphenyl)piperazinylethyl]-5-phenylthien. Bioorg Med Chem Lett, 11 (9): 1119-21. [PMID:11354357]
25. Chang DJ, Chang TK, Yamanishi SS, Salazar FH, Kosaka AH, Khare R, Bhakta S, Jasper JR, Shieh IS, Lesnick JD et al.. (1998) Molecular cloning, genomic characterization and expression of novel human alpha1A-adrenoceptor isoforms. FEBS Lett, 422 (2): 279-83. [PMID:9490024]
26. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK et al.. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 318 (5854): 1258-65. [PMID:17962520]
27. Cottingham C, Chen Y, Jiao K, Wang Q. (2011) The antidepressant desipramine is an arrestin-biased ligand at the α(2A)-adrenergic receptor driving receptor down-regulation in vitro and in vivo. J Biol Chem, 286 (41): 36063-75. [PMID:21859713]
28. da Silva Junior ED, Sato M, Merlin J, Broxton N, Hutchinson DS, Ventura S, Evans BA, Summers RJ. (2017) Factors influencing biased agonism in recombinant cells expressing the human α1A -adrenoceptor. Br J Pharmacol, 174 (14): 2318-2333. [PMID:28444738]
29. Daniels DV, Gever JR, Jasper JR, Kava MS, Lesnick JD, Meloy TD, Stepan G, Williams TJ, Clarke DE, Chang DJ et al.. (1999) Human cloned alpha1A-adrenoceptor isoforms display alpha1L-adrenoceptor pharmacology in functional studies. Eur J Pharmacol, 370 (3): 337-43. [PMID:10334511]
30. Dardonville C, Rozas I. (2004) Imidazoline binding sites and their ligands: an overview of the different chemical structures. Med Res Rev, 24 (5): 639-61. [PMID:15224384]
31. De Pascali F, Ippolito M, Wolfe E, Komolov KE, Hopfinger N, Lemenze D, Kim N, Armen RS, An SS, Scott CP et al.. (2022) β2 -Adrenoceptor agonist profiling reveals biased signalling phenotypes for the β2 -adrenoceptor with possible implications for the treatment of asthma. Br J Pharmacol, 179 (19): 4692-4708. [PMID:35732075]
32. De Ponti F, Gibelli G, Croci T, Arcidiaco M, Crema F, Manara L. (1996) Functional evidence of atypical beta 3-adrenoceptors in the human colon using the beta 3-selective adrenoceptor antagonist, SR 59230A. Br J Pharmacol, 117 (7): 1374-6. [PMID:8730727]
33. Dehvari N, Sato M, Bokhari MH, Kalinovich A, Ham S, Gao J, Nguyen HTM, Whiting L, Mukaida S, Merlin J et al.. (2020) The metabolic effects of mirabegron are mediated primarily by β3 -adrenoceptors. Pharmacol Res Perspect, 8 (5): e00643. [PMID:32813332]
34. Devedjian JC, Esclapez F, Denis-Pouxviel C, Paris H. (1994) Further characterization of human alpha 2-adrenoceptor subtypes: [3H]RX821002 binding and definition of additional selective drugs. Eur J Pharmacol, 252 (1): 43-9. [PMID:7908642]
35. Di Salvo J, Nagabukuro H, Wickham LA, Abbadie C, DeMartino JA, Fitzmaurice A, Gichuru L, Kulick A, Donnelly MJ, Jochnowitz N et al.. (2017) Pharmacological Characterization of a Novel Beta 3 Adrenergic Agonist, Vibegron: Evaluation of Antimuscarinic Receptor Selectivity for Combination Therapy for Overactive Bladder. J Pharmacol Exp Ther, 360 (2): 346-355. [PMID:27965369]
36. Dolan JA, Muenkel HA, Burns MG, Pellegrino SM, Fraser CM, Pietri F, Strosberg AD, Largis EE, Dutia MD, Bloom JD et al.. (1994) Beta-3 adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines. J Pharmacol Exp Ther, 269 (3): 1000-6. [PMID:7912272]
37. Drake MT, Violin JD, Whalen EJ, Wisler JW, Shenoy SK, Lefkowitz RJ. (2008) beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem, 283 (9): 5669-76. [PMID:18086673]
38. Eason MG, Liggett SB. (1995) Identification of a Gs coupling domain in the amino terminus of the third intracellular loop of the alpha 2A-adrenergic receptor. Evidence for distinct structural determinants that confer Gs versus Gi coupling. J Biol Chem, 270 (42): 24753-60. [PMID:7559592]
39. Edmondson SD, Zhu C, Kar NF, Di Salvo J, Nagabukuro H, Sacre-Salem B, Dingley K, Berger R, Goble SD, Morriello G et al.. (2016) Discovery of Vibegron: A Potent and Selective β3 Adrenergic Receptor Agonist for the Treatment of Overactive Bladder. J Med Chem, 59 (2): 609-23. [PMID:26709102]
40. Evans BA, Broxton N, Merlin J, Sato M, Hutchinson DS, Christopoulos A, Summers RJ. (2011) Quantification of functional selectivity at the human α(1A)-adrenoceptor. Mol Pharmacol, 79 (2): 298-307. [PMID:20978120]
41. Evans BA, Papaioannou M, Hamilton S, Summers RJ. (1999) Alternative splicing generates two isoforms of the beta-3 adrenoceptor which are differentially expressed in mouse tissues. Br J Pharmacol, 127: 1525-1531. [PMID:10455305]
42. Evans BA, Sato M, Sarwar M, Hutchinson DS, Summers RJ. (2010) Ligand-directed signalling at beta-adrenoceptors. Br J Pharmacol, 159 (5): 1022-38. [PMID:20132209]
43. Fernández J, Alonso JM, Andrés JI, Cid JM, Díaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA. (2005) Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem, 48 (6): 1709-12. [PMID:15771415]
44. Flacco N, Segura V, Perez-Aso M, Estrada S, Seller JF, Jiménez-Altayó F, Noguera MA, D'Ocon P, Vila E, Ivorra MD. (2013) Different β-adrenoceptor subtypes coupling to cAMP or NO/cGMP pathways: implications in the relaxant response of rat conductance and resistance vessels. Br J Pharmacol, 169 (2): 413-25. [PMID:23373597]
45. Ford AP, Arredondo NF, Blue Jr DR, Bonhaus DW, Jasper J, Kava MS, Lesnick J, Pfister JR, Shieh IA, Vimont RL et al.. (1996) RS-17053 (N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-alpha, alpha-dimethyl-1H-indole-3-ethanamine hydrochloride), a selective alpha 1A-adrenoceptor antagonist, displays low affinity for functional alpha 1-adrenoceptors in human prostate: implications for adrenoceptor classification. Mol Pharmacol, 49 (2): 209-15. [PMID:8632751]
46. Ford AP, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE. (1997) Pharmacological pleiotropism of the human recombinant alpha1A-adrenoceptor: implications for alpha1-adrenoceptor classification. Br J Pharmacol, 121 (6): 1127-35. [PMID:9249248]
47. Frielle T, Daniel KW, Caron MG, Lefkowitz RJ. (1988) Structural basis of beta-adrenergic receptor subtype specificity studied with chimeric beta 1/beta 2-adrenergic receptors. Proc Natl Acad Sci USA, 85 (24): 9494-8. [PMID:2849109]
48. Galandrin S, Bouvier M. (2006) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol, 70 (5): 1575-84. [PMID:16901982]
49. Galandrin S, Oligny-Longpré G, Bonin H, Ogawa K, Galés C, Bouvier M. (2008) Conformational rearrangements and signaling cascades involved in ligand-biased mitogen-activated protein kinase signaling through the beta1-adrenergic receptor. Mol Pharmacol, 74 (1): 162-72. [PMID:18403719]
50. Hague C, Chen Z, Pupo AS, Schulte NA, Toews ML, Minneman KP. (2004) The N terminus of the human alpha1D-adrenergic receptor prevents cell surface expression. J Pharmacol Exp Ther, 309 (1): 388-97. [PMID:14718583]
51. Hancock AA, Buckner SA, Brune ME, Katwala S, Milicic I, Ireland LM, Morse PA, Knepper SM, Meyer MD,Chapple CR et al.. (1998) Pharmacological characterization of A-131701, a novel R 1 -adrenoceptor antagonist selective for R 1A - and R 1D - compared to R 1B -adrenoceptors. Drug Development Research, 44: 140-162.
52. Hatanaka T, Ukai M, Watanabe M, Someya A, Ohtake A, Suzuki M, Ueshima K, Sato S, Sasamata M. (2013) In vitro and in vivo pharmacological profile of the selective β3-adrenoceptor agonist mirabegron in rats. Naunyn Schmiedebergs Arch Pharmacol, 386 (3): 247-53. [PMID:23239087]
53. Hieble JP. (2000) Adrenoceptor subclassification: an approach to improved cardiovascular therapeutics. Pharm Acta Helv, 74 (2-3): 163-71. [PMID:10812954]
54. Hieble JP, Bondinell WE, Ruffolo Jr RR. (1995) Alpha- and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem, 38 (18): 3415-44. [PMID:7658428]
55. Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo Jr RR. (1995) International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev, 47 (2): 267-70. [PMID:7568329]
56. Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, Henderson MA, Nightingale SS, Ho KM, Myles PS et al.. (2020) Preoperative β-Blockade with Propranolol Reduces Biomarkers of Metastasis in Breast Cancer: A Phase II Randomized Trial. Clin Cancer Res, 26 (8): 1803-1811. [PMID:31754048]
57. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN. (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, 369 (2): 151-9. [PMID:14730417]
58. Horie K, Obika K, Foglar R, Tsujimoto G. (1995) Selectivity of the imidazoline alpha-adrenoceptor agonists (oxymetazoline and cirazoline) for human cloned alpha 1-adrenoceptor subtypes. Br J Pharmacol, 116 (1): 1611-8. [PMID:8564227]
59. Hutchinson DS, Bengtsson T, Evans BA, Summers RJ. (2002) Mouse beta 3a- and beta 3b-adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. Br J Pharmacol, 135 (8): 1903-14. [PMID:11959793]
60. Igawa Y, Michel MC. (2013) Pharmacological profile of β3-adrenoceptor agonists in clinical development for the treatment of overactive bladder syndrome. Naunyn Schmiedebergs Arch Pharmacol, 386 (3): 177-83. [PMID:23263450]
61. Isogaya M, Sugimoto Y, Tanimura R, Tanaka R, Kikkawa H, Nagao T, Kurose H. (1999) Binding pockets of the beta(1)- and beta(2)-adrenergic receptors for subtype-selective agonists. Mol Pharmacol, 56 (5): 875-85. [PMID:10531390]
62. January B, Seibold A, Whaley B, Hipkin RW, Lin D, Schonbrunn A, Barber R, Clark RB. (1997) beta2-adrenergic receptor desensitization, internalization, and phosphorylation in response to full and partial agonists. J Biol Chem, 272 (38): 23871-9. [PMID:9295336]
63. Jasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SA, Daunt DA, Bonhaus DW, Eglen RM. (1998) Ligand efficacy and potency at recombinant alpha2 adrenergic receptors: agonist-mediated [35S]GTPgammaS binding. Biochem Pharmacol, 55 (7): 1035-43. [PMID:9605427]
64. Joseph SS, Lynham JA, Colledge WH, Kaumann AJ. (2004) Binding of (-)-[3H]-CGP12177 at two sites in recombinant human beta 1-adrenoceptors and interaction with beta-blockers. Naunyn Schmiedebergs Arch Pharmacol, 369 (5): 525-32. [PMID:15060759]
65. Joseph SS, Lynham JA, Grace AA, Colledge WH, Kaumann AJ. (2004) Markedly reduced effects of (-)-isoprenaline but not of (-)-CGP12177 and unchanged affinity of beta-blockers at Gly389-beta1-adrenoceptors compared to Arg389-beta1-adrenoceptors. Br J Pharmacol, 142 (1): 51-6. [PMID:15037517]
66. Kim TH, Chung KY, Manglik A, Hansen AL, Dror RO, Mildorf TJ, Shaw DE, Kobilka BK, Prosser RS. (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc, 135 (25): 9465-74. [PMID:23721409]
67. Knepper SM, Buckner SA, Brune ME, DeBernardis JF, Meyer MD, Hancock AA. (1995) A-61603, a potent alpha 1-adrenergic receptor agonist, selective for the alpha 1A receptor subtype. J Pharmacol Exp Ther, 274 (1): 97-103. [PMID:7616455]
68. Kurko D, Kapui Z, Nagy J, Lendvai B, Kolok S. (2014) Analysis of functional selectivity through G protein-dependent and -independent signaling pathways at the adrenergic α(2C) receptor. Brain Res Bull, 107: 89-101. [PMID:25080296]
69. Leonardi A, Hieble JP, Guarneri L, Naselsky DP, Poggesi E, Sironi G, Sulpizio AC, Testa R. (1997) Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): role of the alpha-1L adrenoceptor in tissue selectivity, part I. J Pharmacol Exp Ther, 281 (3): 1272-83. [PMID:9190863]
70. Liggett SB. (2003) Polymorphisms of adrenergic receptors: variations on a theme. Assay Drug Dev Technol, 1 (2): 317-26. [PMID:15090197]
71. Littmann T, Göttle M, Reinartz MT, Kälble S, Wainer IW, Ozawa T, Seifert R. (2015) Recruitment of β-arrestin 1 and 2 to the β2-adrenoceptor: analysis of 65 ligands. J Pharmacol Exp Ther, 355 (2): 183-90. [PMID:26306764]
72. Liu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K. (2012) Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR. Science, 335 (6072): 1106-10. [PMID:22267580]
73. Liu X, Kaindl J, Korczynska M, Stößel A, Dengler D, Stanek M, Hübner H, Clark MJ, Mahoney J, Matt RA et al.. (2020) An allosteric modulator binds to a conformational hub in the β2 adrenergic receptor. Nat Chem Biol, 16 (7): 749-755. [PMID:32483378]
74. Louis SN, Nero TL, Iakovidis D, Jackman GP, Louis WJ. (1999) LK 204-545, a highly selective beta1-adrenoceptor antagonist at human beta-adrenoceptors. Eur J Pharmacol, 367 (2-3): 431-5. [PMID:10079020]
75. MacDonald E, Kobilka BK, Scheinin M. (1997) Gene targeting--homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci, 18 (6): 211-9. [PMID:9227000]
76. MacLennan SJ, Luong LA, Jasper JR, To ZP, Eglen RM. (1997) Characterization of alpha 2-adrenoceptors mediating contraction of dog saphenous vein: identity with the human alpha 2A subtype. Br J Pharmacol, 121 (8): 1721-9. [PMID:9283709]
77. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka TS, Thian FS, Hubbell WL et al.. (2015) Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling. Cell, 161 (5): 1101-11. [PMID:25981665]
78. Maïga A, Merlin J, Marcon E, Rouget C, Larregola M, Gilquin B, Fruchart-Gaillard C, Lajeunesse E, Marchetti C, Lorphelin A et al.. (2013) Orthosteric binding of ρ-Da1a, a natural peptide of snake venom interacting selectively with the α1A-adrenoceptor. PLoS ONE, 8 (7): e68841. [PMID:23935897]
79. Methven L, McBride M, Wallace GA, McGrath JC. (2009) The alpha 1B/D-adrenoceptor knockout mouse permits isolation of the vascular alpha 1A-adrenoceptor and elucidates its relationship to the other subtypes. Br J Pharmacol, 158 (1): 209-24. [PMID:19572943]
80. Methven L, Simpson PC, McGrath JC. (2009) Alpha1A/B-knockout mice explain the native alpha1D-adrenoceptor's role in vasoconstriction and show that its location is independent of the other alpha1-subtypes. Br J Pharmacol, 158 (7): 1663-75. [PMID:19888965]
81. Meyer MD, Altenbach RJ, Basha FZ, Carroll WA, Drizin I, Elmore SW, Ehrlich PP, Lebold SA, Tietje K, Sippy KB et al.. (1997) Synthesis and pharmacological characterization of 3-[2-((3aR,9bR)-cis-6-methoxy-2,3,3a,4,5,9b-hexahydro-1H-benz[e] isoindol-2-yl)ethyl]pyrido-[3',4':4,5]thieno[3,2-d]pyrimidine-2,4 (1H,3H)-dione (A-131701): a uroselective alpha 1A adrenoceptor antagonist for the symptomatic treatment of benign prostatic hyperplasia. J Med Chem, 40 (20): 3141-3. [PMID:9379432]
82. Michel AD, Loury DN, Whiting RL. (1990) Assessment of imiloxan as a selective alpha 2B-adrenoceptor antagonist. Br J Pharmacol, 99 (3): 560-4. [PMID:1970500]
83. Michel MC, Korstanje C. (2016) β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther, 159: 66-82. [PMID:26808167]
84. Michel MC, Ochodnicky P, Summers RJ. (2010) Tissue functions mediated by beta(3)-adrenoceptors-findings and challenges. Naunyn Schmiedebergs Arch Pharmacol, 382 (2): 103-8. [PMID:20517594]
85. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther, 303 (2): 791-804. [PMID:12388666]
86. Minneman KP, Theroux TL, Hollinger S, Han C, Esbenshade TA. (1994) Selectivity of agonists for cloned alpha 1-adrenergic receptor subtypes. Mol Pharmacol, 46 (5): 929-36. [PMID:7969082]
87. Mistry SN, Baker JG, Fischer PM, Hill SJ, Gardiner SM, Kellam B. (2013) Synthesis and in vitro and in vivo characterization of highly β1-selective β-adrenoceptor partial agonists. J Med Chem, 56 (10): 3852-65. [PMID:23614528]
88. Molenaar P, Sarsero D, Arch JR, Kelly J, Henson SM, Kaumann AJ. (1997) Effects of (-)-RO363 at human atrial beta-adrenoceptor subtypes, the human cloned beta 3-adrenoceptor and rodent intestinal beta 3-adrenoceptors. Br J Pharmacol, 120 (2): 165-76. [PMID:9117106]
89. Morishima S, Tanaka T, Yamamoto H, Suzuki F, Akino H, Yokoyama O, Muramatsu I. (2007) Identification of alpha-1L and alpha-1A adrenoceptors in human prostate by tissue segment binding. J Urol, 177 (1): 377-81. [PMID:17162094]
90. Munk SA, Harcourt D, Ambrus G, Denys L, Gluchowski C, Burke JA, Kharlamb AB, Manlapaz CA, Padillo EU, Runde E et al.. (1996) Synthesis and evaluation of 2-[(5-methylbenz-1-ox-4-azin-6-yl)imino]imidazoline, a potent, peripherally acting alpha 2 adrenoceptor agonist. J Med Chem, 39 (18): 3533-8. [PMID:8784451]
91. Méjean A, Guillaume JL, Strosberg AD. (1995) Carazolol: a potent, selective beta 3-adrenoceptor agonist. Eur J Pharmacol, 291 (3): 359-66. [PMID:8719421]
92. Nasrollahi-Shirazi S, Sucic S, Yang Q, Freissmuth M, Nanoff C. (2016) Comparison of the β-Adrenergic Receptor Antagonists Landiolol and Esmolol: Receptor Selectivity, Partial Agonism, and Pharmacochaperoning Actions. J Pharmacol Exp Ther, 359 (1): 73-81. [PMID:27451411]
93. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP et al.. (2013) The dynamic process of β(2)-adrenergic receptor activation. Cell, 152 (3): 532-42. [PMID:23374348]
94. Obika K, Shibata K, Horie K, Foglar R, Kimura K, Tsujimoto G. (1995) NS-49, a novel alpha 1a-adrenoceptor-selective agonist characterization using recombinant human alpha 1-adrenoceptors. Eur J Pharmacol, 291 (3): 327-34. [PMID:8719417]
95. Patane MA, Scott AL, Broten TP, Chang RS, Ransom RW, DiSalvo J, Forray C, Bock MG. (1998) 4-Amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6, 7-dimethoxyquinazoline (L-765,314): a potent and selective alpha1b adrenergic receptor antagonist. J Med Chem, 41 (8): 1205-8. [PMID:9548811]
96. Pauwels PJ, Gommeren W, Van Lommen G, Janssen PA, Leysen JE. (1988) The receptor binding profile of the new antihypertensive agent nebivolol and its stereoisomers compared with various beta-adrenergic blockers. Mol Pharmacol, 34 (6): 843-51. [PMID:2462161]
97. Pauwels PJ, Rauly I, Wurch T. (2003) Dissimilar pharmacological responses by a new series of imidazoline derivatives at precoupled and ligand-activated alpha 2A-adrenoceptor states: evidence for effector pathway-dependent differential antagonism. J Pharmacol Exp Ther, 305 (3): 1015-23. [PMID:12649300]
98. Peltonen JM, Pihlavisto M, Scheinin M. (1998) Subtype-specific stimulation of [35S]GTPgammaS binding by recombinant alpha2-adrenoceptors. Eur J Pharmacol, 355 (2-3): 275-9. [PMID:9760042]
99. Pihlavisto M, Sjöholm B, Scheinin M, Wurster S. (1998) Modulation of agonist binding to recombinant human alpha2-adrenoceptors by sodium ions. Biochim Biophys Acta, 1448 (1): 135-46. [PMID:9824686]
100. Popp BD, Hutchinson DS, Evans BA, Summers RJ. (2004) Stereoselectivity for interactions of agonists and antagonists at mouse, rat and human beta3-adrenoceptors. Eur J Pharmacol, 484 (2-3): 323-31. [PMID:14744619]
101. Procopiou PA, Barrett VJ, Bevan NJ, Biggadike K, Box PC, Butchers PR, Coe DM, Conroy R, Emmons A, Ford AJ et al.. (2010) Synthesis and structure-activity relationships of long-acting beta2 adrenergic receptor agonists incorporating metabolic inactivation: an antedrug approach. J Med Chem, 53 (11): 4522-30. [PMID:20462258]
102. Proudman RGW, Akinaga J, Baker JG. (2022) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants and antipsychotics for the human α2A, α2B, and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect, 10 (2): e00936. [PMID:35224877]
103. Proudman RGW, Akinaga J, Baker JG. (2022) The signaling and selectivity of α-adrenoceptor agonists for the human α2A, α2B and α2C-adrenoceptors and comparison with human α1 and β-adrenoceptors. Pharmacol Res Perspect, 10 (5): e01003. [PMID:36101495]
104. Proudman RGW, Baker JG. (2021) The selectivity of α-adrenoceptor agonists for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 9 (4): e00799. [PMID:34355529]
105. Proudman RGW, Pupo AS, Baker JG. (2020) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 8 (4): e00602. [PMID:32608144]
106. Quaresma BMCS, Pimenta AR, Santos da Silva AC, Pupo AS, Romeiro LAS, Silva CLM, Noël F. (2019) Revisiting the Pharmacodynamic Uroselectivity of α 1-Adrenergic Receptor Antagonists. J Pharmacol Exp Ther, 371 (1): 106-112. [PMID:31285236]
107. Quinton L, Girard E, Maiga A, Rekik M, Lluel P, Masuyer G, Larregola M, Marquer C, Ciolek J, Magnin T et al.. (2010) Isolation and pharmacological characterization of AdTx1, a natural peptide displaying specific insurmountable antagonism of the alpha1A-adrenoceptor. Br J Pharmacol, 159 (2): 316-25. [PMID:20015090]
108. Ramsay D, Carr IC, Pediani J, Lopez-Gimenez JF, Thurlow R, Fidock M, Milligan G. (2004) High-affinity interactions between human alpha1A-adrenoceptor C-terminal splice variants produce homo- and heterodimers but do not generate the alpha1L-adrenoceptor. Mol Pharmacol, 66 (2): 228-39. [PMID:15266013]
109. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS et al.. (2011) Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature, 469 (7329): 175-80. [PMID:21228869]
110. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al.. (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 477 (7366): 549-55. [PMID:21772288]
111. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK et al.. (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature, 469 (7329): 236-40. [PMID:21228876]
112. Rosengren AH, Jokubka R, Tojjar D, Granhall C, Hansson O, Li DQ, Nagaraj V, Reinbothe TM, Tuncel J, Eliasson L et al.. (2010) Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science, 327 (5962): 217-20. [PMID:19965390]
113. Sallinen J, Höglund I, Engström M, Lehtimäki J, Virtanen R, Sirviö J, Wurster S, Savola JM, Haapalinna A. (2007) Pharmacological characterization and CNS effects of a novel highly selective alpha2C-adrenoceptor antagonist JP-1302. Br J Pharmacol, 150 (4): 391-402. [PMID:17220913]
114. Sato M, Horinouchi T, Hutchinson DS, Evans BA, Summers RJ. (2007) Ligand-directed signaling at the beta3-adrenoceptor produced by 3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol, 72 (5): 1359-68. [PMID:17717109]
115. Sato M, Hutchinson DS, Evans BA, Summers RJ. (2008) The beta3-adrenoceptor agonist 4-[[(Hexylamino)carbonyl]amino]-N-[4-[2-[[(2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyl]-benzenesulfonamide (L755507) and antagonist (S)-N-[4-[2-[[3-[3-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]-ethyl]phenyl]benzenesulfonamide (L748337) activate different signaling pathways in Chinese hamster ovary-K1 cells stably expressing the human beta3-adrenoceptor. Mol Pharmacol, 74 (5): 1417-28. [PMID:18684840]
116. Sato T, Baker J, Warne T, Brown GA, Leslie AG, Congreve M, Tate CG. (2015) Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol-Bound β1-Adrenergic Receptor. Mol Pharmacol, 88 (6): 1024-34. [PMID:26385885]
117. Sato Y, Kurose H, Isogaya M, Nagao T. (1996) Molecular characterization of pharmacological properties of T-0509 for beta-adrenoceptors. Eur J Pharmacol, 315 (3): 363-7. [PMID:8982677]
118. Saussy Jr DL, Goetz AS, Queen KL, King HK, Lutz MW, Rimele TJ. (1996) Structure activity relationships of a series of buspirone analogs at alpha-1 adrenoceptors: further evidence that rat aorta alpha-1 adrenoceptors are of the alpha-1D-subtype. J Pharmacol Exp Ther, 278 (1): 136-44. [PMID:8764344]
119. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al.. (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J Pharmacol Exp Ther, 272 (1): 134-42. [PMID:7815325]
120. Sharif NA, Xu SX, Crider JY, McLaughlin M, Davis TL. (2001) Levobetaxolol (Betaxon) and other beta-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes. J Ocul Pharmacol Ther, 17 (4): 305-17. [PMID:11572462]
121. Shibata K, Foglar R, Horie K, Obika K, Sakamoto A, Ogawa S, Tsujimoto G. (1995) KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. Mol Pharmacol, 48 (2): 250-8. [PMID:7651358]
122. Small KM, Schwarb MR, Glinka C, Theiss CT, Brown KM, Seman CA, Liggett SB. (2006) Alpha2A- and alpha2C-adrenergic receptors form homo- and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and beta-arrestin recruitment. Biochemistry, 45 (15): 4760-7. [PMID:16605244]
123. Soave M, Stoddart LA, Brown A, Woolard J, Hill SJ. (2016) Use of a new proximity assay (NanoBRET) to investigate the ligand-binding characteristics of three fluorescent ligands to the human β1-adrenoceptor expressed in HEK-293 cells. Pharmacol Res Perspect, 4 (5): e00250. [PMID:27588207]
124. Soriano-Ursúa MA, McNaught-Flores DA, Nieto-Alamilla G, Segura-Cabrera A, Correa-Basurto J, Arias-Montaño JA, Trujillo-Ferrara JG. (2012) Cell-based and in-silico studies on the high intrinsic activity of two boron-containing salbutamol derivatives at the human β₂-adrenoceptor. Bioorg Med Chem, 20 (2): 933-41. [PMID:22182578]
125. Soriano-Ursúa MA, Valencia-Hernández I, Arellano-Mendoza MG, Correa-Basurto J, Trujillo-Ferrara JG. (2009) Synthesis, pharmacological and in silico evaluation of 1-(4-di-hydroxy-3,5-dioxa-4-borabicyclo[4.4.0]deca-7,9,11-trien-9-yl)-2-(tert-butylamino)ethanol, a compound designed to act as a beta2 adrenoceptor agonist. Eur J Med Chem, 44 (7): 2840-6. [PMID:19168263]
126. Strosberg AD. (1997) Structure and function of the beta 3-adrenergic receptor. Annu Rev Pharmacol Toxicol, 37: 421-50. [PMID:9131260]
127. Su M, Zhu L, Zhang Y, Paknejad N, Dey R, Huang J, Lee MY, Williams D, Jordan KD, Eng ET et al.. (2020) Structural Basis of the Activation of Heterotrimeric Gs-Protein by Isoproterenol-Bound β1-Adrenergic Receptor. Mol Cell, 80 (1): 59-71.e4. [PMID:32818430]
128. Suzuki T, Nantel F, Bonin H, Valiquette M, Bouvier M. (1993) Cellular characterization of the pharmacological selectivity and tachyphylactic properties of denopamine for the human beta adrenergic receptors. J Pharmacol Exp Ther, 267 (2): 785-90. [PMID:7902433]
129. Sykes DA, Charlton SJ. (2012) Slow receptor dissociation is not a key factor in the duration of action of inhaled long-acting β2-adrenoceptor agonists. Br J Pharmacol, 165 (8): 2672-83. [PMID:21883146]
130. Takasu T, Ukai M, Sato S, Matsui T, Nagase I, Maruyama T, Sasamata M, Miyata K, Uchida H, Yamaguchi O. (2007) Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. J Pharmacol Exp Ther, 321 (2): 642-7. [PMID:17293563]
131. Tan M, Walwyn WM, Evans CJ, Xie CW. (2009) p38 MAPK and beta-arrestin 2 mediate functional interactions between endogenous micro-opioid and alpha2A-adrenergic receptors in neurons. J Biol Chem, 284 (10): 6270-81. [PMID:19126537]
132. Taniguchi T, Inagaki R, Murata S, Akiba I, Muramatsu I. (1999) Microphysiometric analysis of human alpha1a-adrenoceptor expressed in Chinese hamster ovary cells. Br J Pharmacol, 127 (4): 962-8. [PMID:10433504]
133. Testa R, Guarneri L, Angelico P, Poggesi E, Taddei C, Sironi G, Colombo D, Sulpizio AC, Naselsky DP, Hieble JP et al.. (1997) Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): role of the alpha-1L adrenoceptor in tissue selectivity, part II. J Pharmacol Exp Ther, 281 (3): 1284-93. [PMID:9190864]
134. Uberti MA, Hague C, Oller H, Minneman KP, Hall RA. (2005) Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J Pharmacol Exp Ther, 313 (1): 16-23. [PMID:15615865]
135. Uehling DE, Shearer BG, Donaldson KH, Chao EY, Deaton DN, Adkison KK, Brown KK, Cariello NF, Faison WL, Lancaster ME et al.. (2006) Biarylaniline phenethanolamines as potent and selective beta3 adrenergic receptor agonists. J Med Chem, 49 (9): 2758-71. [PMID:16640337]
136. Uhlén S, Porter AC, Neubig RR. (1994) The novel alpha-2 adrenergic radioligand [3H]-MK912 is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. J Pharmacol Exp Ther, 271 (3): 1558-65. [PMID:7996470]
137. van Wieringen JP, Michel-Reher MB, Hatanaka T, Ueshima K, Michel MC. (2013) The new radioligand [(3)H]-L 748,337 differentially labels human and rat β3-adrenoceptors. Eur J Pharmacol, 720 (1-3): 124-30. [PMID:24183974]
138. Vilardaga JP, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ. (2008) Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat Chem Biol, 4 (2): 126-31. [PMID:18193048]
139. Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AG, Schertler GF, Tate CG. (2011) The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature, 469 (7329): 241-4. [PMID:21228877]
140. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF. (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature, 454 (7203): 486-91. [PMID:18594507]
141. Weber AE, Ok HO, Alvaro RF, Candelore MR, Cascieri MA, Chiu SH, Deng L, Forrest MJ, Hom GJ, Hutchins JE et al.. (1998) 3-Pyridyloxypropanolamine agonists of the beta 3 adrenergic receptor with improved pharmacokinetic properties. Bioorg Med Chem Lett, 8 (16): 2111-6. [PMID:9873496]
142. Weinshank RL, Adham N, Macchi M, Olsen MA, Branchek TA, Hartig PR. (1991) Molecular cloning and characterization of a high affinity dopamine receptor (D1 beta) and its pseudogene. J Biol Chem, 266 (33): 22427-35. [PMID:1834671]
143. Weis WI, Kobilka BK. (2018) The Molecular Basis of G Protein-Coupled Receptor Activation. Annu Rev Biochem, 87: 897-919. [PMID:29925258]
144. Wetzel JM, Miao SW, Forray C, Borden LA, Branchek TA, Gluchowski C. (1995) Discovery of alpha 1a-adrenergic receptor antagonists based on the L-type Ca2+ channel antagonist niguldipine. J Med Chem, 38 (10): 1579-81. [PMID:7752182]
145. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S et al.. (1999) In vitro alpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br J Pharmacol, 127 (1): 252-8. [PMID:10369480]
146. Wiysonge CS, Bradley HA, Volmink J, Mayosi BM, Opie LH. (2017) Beta-blockers for hypertension. Cochrane Database Syst Rev, 1: CD002003. [PMID:28107561]
147. Yanagisawa T, Sato T, Yamada H, Sukegawa J, Nunoki K. (2000) Selectivity and potency of agonists for the three subtypes of cloned human beta-adrenoceptors expressed in Chinese hamster ovary cells. Tohoku J Exp Med, 192 (3): 181-93. [PMID:11249148]
148. Yang J, Dolinger M, Ritaccio G, Mazurkiewicz J, Conti D, Zhu X, Huang Y. (2012) Leucine stimulates insulin secretion via down-regulation of surface expression of adrenergic α2A receptor through the mTOR (mammalian target of rapamycin) pathway: implication in new-onset diabetes in renal transplantation. J Biol Chem, 287 (29): 24795-806. [PMID:22645144]
149. Yoshio R, Taniguchi T, Itoh H, Muramatsu I. (2001) Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn J Pharmacol, 86 (2): 189-95. [PMID:11459121]
150. Young P, Berge J, Chapman H, Cawthorne MA. (1989) Novel alpha 2-adrenoceptor antagonists show selectivity for alpha 2A- and alpha 2B-adrenoceptor subtypes. Eur J Pharmacol, 168 (3): 381-6. [PMID:2573535]
151. Yuan D, Liu Z, Kaindl J, Maeda S, Zhao J, Sun X, Xu J, Gmeiner P, Wang HW, Kobilka BK. (2020) Activation of the α2B adrenoceptor by the sedative sympatholytic dexmedetomidine. Nat Chem Biol, 16 (5): 507-512. [PMID:32152538]
Subcommittee members:
Roger J. Summers
Martin C. Michel
Jillian G. Baker |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Adrenoceptors, α1
The three α1-adrenoceptor subtypes are α1A, α1B and α1D. The previously described α1C-adrenoceptor is a species homologue that corresponds to the pharmacologically defined α1A-adrenoceptor [55]. Some tissues possess α1A-adrenoceptors (termed α1L-adrenoceptors [46,89]) that display relatively low affinity in functional and binding assays for prazosin indicative of different receptor states or locations. α1A-Adrenoceptor C-terminal splice variants form homo- and heterodimers, and do not generate a functional α1L-adrenoceptor [108]. Recombinant α1D-adrenoceptors have been shown in some heterologous systems to be mainly located intracellularly but cell-surface localization is encouraged by truncation of the N-terminus, or by co-expression and formation of heterodimers of with α1B-α1B- or β2--β2-adrenoceptors [50,134]. In blood vessels all three α1--adrenoceptor subtypes are located both at the cell surface and intracellularly [79-80]. Signalling is predominantly via Gq/11 but α1-adrenoceptors also couple to Gi/o, Gs and G12/13. Several α1A-adrenoceptor agonists display ligand directed signalling bias relative to noradrenaline [40] although some bias appears to relate to off-target activity [28] . There are also differences between subtypes in coupling efficiency to different pathways. In vascular smooth muscle, the potency of agonists is related to the predominant subtype, α1D- conveying greater agonist sensitivity compared to α1A-adrenoceptors [44].
Adrenoceptors, α2
The three α2-adrenoceptor subtypes are termed α2A, α2B and α2C. ARC-239 and prazosin show some selectivity for α2B- and α2C-adrenoceptors over α2A-adrenoceptors. Oxymetazoline is an imidazoline partial agonist that also binds to non-GPCR binding sites for imidazolines, classified as I1, I2 and I3 [30] at which catecholamines have a low affinity, while rilmenidine and moxonidine are selective ligands with hypotensive effects in vivo. I1-imidazoline recognition sites cause central inhibition of sympathetic tone, I2-imidazoline sites are an allosteric binding site on monoamine oxidase B, and I3-imidazoline sites regulate insulin secretion from pancreatic β-cells. α2A-adrenoceptor stimulation reduces insulin secretion from β-islets [148], with a polymorphism in the 5’-UTR of the ADRA2A gene being associated with increased receptor expression in β-islets and heightened susceptibility to diabetes [112]. The α2A- and α2C-adrenoceptors form homodimers [122]. Heterodimers between α2A- and either the α2c-adrenoceptor or μ opioid peptide receptor exhibit altered signalling and trafficking properties compared to the individual receptors [122,131,138]. Signalling by α2-adrenoceptors is primarily via Gi/o, although the α2A-adrenoceptor also couples to Gs [38]. Imidazoline compounds display bias relative to each other at the α2A-adrenoceptor [97]. The noradrenaline reuptake inhibitor desipramine acts directly on α2A-adrenoceptors to promote internalisation via recruitment of β-arrestin [27]. The structure of the α2B-adrenoceptor has recently been determined by cryo-EM in complex with dexmedetomidine and Gαo at a resolution of 2.9 Å providing insights into the structural requirements required for interactions with α2-adrenoceptor agonists [151].
Adrenoceptors, β
The three β-adrenoceptors are termed β1, β2 and β3. [125I]ICYP can be used to define either β1- or β2-adrenoceptors when conducted in the presence of a β1- or a β2-adrenoceptor-selective antagonist. A fluorescent analogue of CGP 12177 is used to study β-adrenoceptors in living cells [12]. [125I]ICYP at higher (nM) concentrations has been used to label β3-adrenoceptors in systems with few if any other β-adrenoceptor subtypes. The β3-adrenoceptor has an intron in the coding region, but splice variants have only been described for the mouse [41], where the isoforms display different signalling characteristics [59]. There are three β-adrenoceptors in turkey (termed the tβ, tβ3c and tβ4c) with pharmacology that differs from the human β-adrenoceptors [6]. Numerous polymorphisms have been described for the β-adrenoceptors; some are associated with altered signalling and trafficking, susceptibility to disease and/or altered responses to pharmacotherapy [70]. All β-adrenoceptors couple to Gs (activating adenylyl cyclase and elevating cAMP levels), but the β2- and β3-adrenoceptors in particular can also activate Gi and the β2-adrenoceptor activates β-arrestin-mediated signalling. Many β1- and β2-adrenoceptor antagonists are agonists at β3-adrenoceptors (CL316243, CGP 12177 and carazolol). Many ‘antagonists’ of cAMP accumulation, for example carvedilol and bucindolol, weakly activate MAP kinase pathways [10,42,48-49,114-115] and thus display biased agonism. Bupranolol acts as a neutral antagonist in most systems so far examined. Agonists also display biased signalling at the β2-adrenoceptor via Gs or arrestins [37]. X-ray crystal structures have been described of the agonist bound [139] and antagonist bound forms of the β1- [140], agonist-bound [26] and antagonist-bound forms of the β2-adrenoceptor [109,111], as well as a fully active agonist-bound, Gs protein-coupled β2-adrenoceptor [110], as well as providing insights into the structural requirements for agonist, partial agonist, antagonist, G protein and β-arrestin coupling [143]. Structures have also been described for negative allosteric modulators of the β2-adrenoceptor [73]. Cryo-EM studies have also been recently described that provide a structural framework for agonist mediated signal transduction [127]. The agonists carvedilol and bucindolol bind to a site on the β1-adrenoceptor involving contacts in TM2, 3, and 7 and extracellular loop 2 that may facilitate coupling to arrestins [140]. Compounds displaying β-arrestin-biased signalling at the β2-adrenoceptor have a greater effect on the conformation of TM7, whereas full agonists for Gs coupling promote movement of TM5 and TM6 [72]. Recent studies using NMR spectroscopy demonstrate significant conformational flexibility in the β2-adrenoceptor that is stabilized by both agonist and G proteins highlighting the dynamic nature of interactions with both ligand and downstream signalling partners [66,77,93]. Such flexibility likely has consequences for our understanding of allosterism and biased agonism, and for the future therapeutic exploitation of these phenomena.