Top ▲

β3-adrenoceptor

Click here for help

Target id: 30

Nomenclature: β3-adrenoceptor

Family: Adrenoceptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 408 8p11.23 ADRB3 adrenoceptor beta 3 29,53
Mouse 7 400 8 15.94 cM Adrb3 adrenergic receptor, beta 3 64
Rat 7 400 16q12.3 Adrb3 adrenoceptor beta 3 36,61
Previous and Unofficial Names Click here for help
atypical β-adrenoceptor | ADRB | beta-3 adrenoreceptor | Adrb-3 | beta 3-AR | beta3-adrenergic receptor | adrenergic receptor
Database Links Click here for help
Specialist databases
GPCRdb adrb3_human (Hs), adrb3_mouse (Mm), adrb3_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Dog β3-adrenoceptor bound to mirabegron in complex with a miniGs heterotrimer.
PDB Id:  7DH5
Ligand:  mirabegron
Resolution:  3.16Å
Species:  Dog
References:  63
Associated Proteins Click here for help
Interacting Proteins
Name Effect References
β3-adrenoceptor 12
β2-adrenoceptor 12
c-Src ERK activation 16
Natural/Endogenous Ligands Click here for help
(-)-adrenaline
(-)-noradrenaline
Potency order of endogenous ligands (Human)
(-)-noradrenaline = (-)-adrenaline

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]ICYP Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Partial agonist 9.2 – 9.8 pKd 56,60,70,79,85
pKd 9.2 – 9.8 (Kd 6.31x10-10 – 1.58x10-10 M) [56,60,70,79,85]
[125I]ICYP Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Partial agonist 9.3 – 9.4 pKd 70
pKd 9.3 – 9.4 [70]
[125I]ICYP Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Partial agonist 9.2 pKd 70
pKd 9.2 [70]
[3H]CGP12177 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Partial agonist 7.0 pKd 5
pKd 7.0 [5]
carazolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 8.4 pKi 5
pKi 8.4 (Ki 1.99x10-9 M) [5]
carazolol Small molecule or natural product Approved drug Mm Full agonist 7.7 pKi 62
pKi 7.7 [62]
carazolol Small molecule or natural product Approved drug Rn Full agonist 7.7 pKi 62
pKi 7.7 [62]
CGP 12177 Small molecule or natural product Mm Partial agonist 6.8 pKi 62
pKi 6.8 [62]
CGP 12177 Small molecule or natural product Rn Partial agonist 6.8 pKi 62
pKi 6.8 [62]
CGP 12177 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.1 – 7.3 pKi 10,56,60,62
pKi 6.1 – 7.3 (Ki 7.94x10-7 – 5.01x10-8 M) [10,56,60,62]
BRL 37344 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.4 – 7.0 pKi 10,27,40,62
pKi 6.4 – 7.0 (Ki 3.98x10-7 – 1x10-7 M) [10,27,40,62]
BRL 37344 Small molecule or natural product Mm Full agonist 6.5 pKi 62
pKi 6.5 [62]
BRL 37344 Small molecule or natural product Rn Full agonist 6.5 pKi 62
pKi 6.5 [62]
CL316243 Small molecule or natural product Mm Agonist 5.9 pKi 76
pKi 5.9 binding [76]
isoprenaline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 5.1 – 6.2 pKi 5,40,60,62,70,79,85
pKi 5.1 – 6.2 [5,40,60,62,70,79,85]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.7 – 6.3 pKi 40,70,85
pKi 4.7 – 6.3 [40,70,85]
fenoterol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 5.4 pKi 5
pKi 5.4 [5]
(±)-adrenaline Small molecule or natural product Ligand is endogenous in the given species Mm Full agonist 5.3 pKi 62
pKi 5.3 [62]
(±)-adrenaline Small molecule or natural product Ligand is endogenous in the given species Rn Full agonist 5.3 pKi 62
pKi 5.3 [62]
isoprenaline Small molecule or natural product Approved drug Rn Full agonist 5.3 pKi 62
pKi 5.3 [62]
cimaterol Small molecule or natural product Click here for species-specific activity table Hs Full agonist 5.3 pKi 5
pKi 5.3 [5]
amibegron Small molecule or natural product Hs Full agonist 5.2 pKi 10
pKi 5.2 [10]
CL316243 Small molecule or natural product Hs Agonist 5.2 pKi 101
pKi 5.2 [101]
isoprenaline Small molecule or natural product Approved drug Mm Full agonist 4.2 – 5.3 pKi 62,70
pKi 4.2 – 5.3 [62,70]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 3.9 – 4.7 pKi 5,40
pKi 3.9 – 4.7 [5,40]
(±)-adrenaline Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 3.9 – 4.7 pKi 10,40,62
pKi 3.9 – 4.7 [10,40,62]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Rn Full agonist 4.2 pKi 70
pKi 4.2 [70]
(-)-noradrenaline Small molecule or natural product Approved drug Ligand is endogenous in the given species Ligand has a PDB structure Mm Full agonist 3.8 pKi 70
pKi 3.8 [70]
L 755507 Small molecule or natural product Hs Full agonist 10.1 pEC50 5
pEC50 10.1 [5]
CL316243 Small molecule or natural product Mm Agonist 8.7 – 9.8 pEC50 44,76
pEC50 8.7 – 9.8 cAMP accumulation [44,76]
vibegron Small molecule or natural product Approved drug Monkey Agonist 9.2 pEC50 28
pEC50 9.2 (EC50 5.7x10-10 M) [28]
vibegron Small molecule or natural product Approved drug Primary target of this compound Hs Agonist 8.7 – 9.0 pEC50 14,26,28
pEC50 8.7 – 9.0 [14,26,28]
carazolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 8.8 pEC50 5
pEC50 8.8 [5]
L742791 Small molecule or natural product Hs Agonist 8.8 pEC50 100
pEC50 8.8 (EC50 1.6x10-9 M) [100]
solabegron Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 8.4 – 8.7 pEC50 45,59,94
pEC50 8.4 – 8.7 [45,59,94]
L-748337 Small molecule or natural product Hs Partial agonist 8.4 pEC50 5
pEC50 8.4 [5]
mirabegron Small molecule or natural product Approved drug Ligand has a PDB structure Mm Agonist 7.3 – 9.3 pEC50 24
pEC50 8.3 – 9.3 [24]
pEC50 7.3 – 7.8 [24]
mirabegron Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Agonist 7.7 – 8.8 pEC50 14,24,38,88
pEC50 7.7 – 8.8 [14,24,38,88]
vibegron Small molecule or natural product Approved drug Clf Agonist 8.0 pEC50 28
pEC50 8.0 (EC50 1.1x10-8 M) [28]
mirabegron Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Agonist 7.7 pEC50 24
pEC50 7.7 [24]
fenoterol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 7.6 pEC50 5
pEC50 7.6 [5]
BRL 37344 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 7.5 pEC50 5
pEC50 7.5 [5]
isoprenaline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 7.4 pEC50 5
pEC50 7.4 [5]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.2 pEC50 5
pEC50 7.2 [5]
SB251023 Small molecule or natural product Mm Agonist 7.1 pEC50 43
pEC50 7.1 [43]
vibegron Small molecule or natural product Approved drug Rn Agonist 7.1 pEC50 28
pEC50 7.1 (EC50 8.6x10-8 M) [28]
cimaterol Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.0 pEC50 5
pEC50 7.0 [5]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 6.5 pEC50 5
pEC50 6.5 [5]
abediterol Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 5.5 pIC50 1
pIC50 5.5 (IC50 3.001x10-6 M) [1]
View species-specific agonist tables
Agonist Comments
The species orthologs of the human β-ARs found in the rat, mouse, and cow have significantly different agonist pharmacology that has proved problematic for drug development. For example, BRL37344 is a potent agonist at rodent β3-AR but a weak partial agonist at the human β3-AR [2] and carazolol has a much higher affinity for the bovine receptor [69], whereas [125I]CYP has lower affinity [85]. Carazolol is a potent high efficacy partial agonist at β3-AR but is also a potent partial agonist at β1-AR and a highly potent antagonist at β2-AR [5]. Agonist SB251023 has an pEC50 of 6.9 for the splice variant of the mouse β3 receptor, β3b [43]. For the agonist CL316243, a cAMP accumulation assay measured pEC50 values of 9.94 and 9.97 for the β3a and β3b splice variants respectively [78]. Although the human β3-AR has an intron no splice variants have been observed. The β3-AR has a more important physiological role in rodents than in humans. Since the β3-AR largely lacks sites required for receptor phosphorylation it is less susceptible to desensitisation than other β-AR subtypes. However, desensitisation can occur associated with mRNA and protein down regulation of receptor and post receptor signalling proteins and there is also evidence for cell specific events [66]. Ligands acting at β3-AR can also display ligand-directed signalling [76-77]. Vibegron, solabegron and mirabegron are selective β3-AR agonists that potently activate human β3-AR [45].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
L-748337 Small molecule or natural product Hs Antagonist 9.2 – 9.5 pKB 77
pKB 9.2 – 9.5 [77]
[3H]L748337 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Antagonist 8.4 – 8.7 pKd 96
pKd 8.4 – 8.7 [96]
carvedilol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.3 – 9.4 pKi 4,15
pKi 8.3 – 9.4 [4,15]
tertatolol Small molecule or natural product Hs Antagonist 8.6 pKi 70
pKi 8.6 [70]
L-748328 Small molecule or natural product Hs Antagonist 8.4 – 8.6 pKi 5,15
pKi 8.4 – 8.6 [5,15]
L-748337 Small molecule or natural product Hs Antagonist 8.0 – 8.4 pKi 5,15
pKi 8.0 – 8.4 [5,15]
SR59230A Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.9 – 8.4 pKi 5,15,23,40
pKi 6.9 – 8.4 [5,15,23,40]
pindolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 7.1 pKi 5
pKi 7.1 [5]
bupranolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.8 – 7.3 pKi 10,15,56,62
pKi 6.8 – 7.3 [10,15,56,62]
tertatolol Small molecule or natural product Mm Antagonist 7.0 pKi 70
pKi 7.0 [70]
tertatolol Small molecule or natural product Rn Antagonist 7.0 pKi 70
pKi 7.0 [70]
bunolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.8 pKi 70
pKi 6.8 (Ki 1.6x10-7 M) [70]
propranolol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 6.3 – 7.2 pKi 4,56,70
pKi 6.3 – 7.2 [4,56,70]
propranolol Small molecule or natural product Approved drug Mm Antagonist 6.5 – 6.6 pKi 70
pKi 6.5 – 6.6 [70]
propranolol Small molecule or natural product Approved drug Rn Antagonist 6.4 pKi 70
pKi 6.4 [70]
bunolol Small molecule or natural product Approved drug Rn Antagonist 6.4 pKi 70
pKi 6.4 [70]
nebivolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 5.7 – 7.0 pKi 5,33
pKi 5.7 – 7.0 [5,33]
Description: Radioligand binding
nadolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.2 – 6.3 pKi 4,15
pKi 6.2 – 6.3 [4,15]
bunolol Small molecule or natural product Approved drug Mm Antagonist 6.2 – 6.3 pKi 70
pKi 6.2 – 6.3 [70]
ICI 118551 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 5.8 – 6.6 pKi 4,40,56,62
pKi 5.8 – 6.6 [4,40,56,62]
CGP 20712A Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.1 – 5.7 pKi 4,15,56,62
pKi 5.1 – 5.7 [4,15,56,62]
pindolol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 5.6 – 7.4 pEC50 5
pEC50 5.6 – 7.4 [5]
View species-specific antagonist tables
Antagonist Comments
Many of the compounds listed as antagonists at the β3-AR can behave in some systems as agonists at the β3-adrenoceptor. These include L748337, SR59230A, carvedilol, nadolol, tertatolol, pindolol and propranolol as well as compounds that exhibit similar behaviour at other β-AR subtypes, notably CGP12177, pindolol, cyanopindolol, labetalol and alprenolol [5,10-11,27,62,89]. The approved drug propranolol is primarily a β1-/β2-AR antagonist with lower affinity for β3-AR. SR59230A that is often described as a selective antagonist at β3-AR displays little selectivity and has similar potency at all 3 subtypes (in fact higher affinity at β2-AR) [5]- what it does have is reasonable potency at blocking β3-AR. L-748337 is currently the most selective antagonist at the human β3-AR [96]. The human β3-AR also appears to exist in two active conformations (see also β1-AR) with fenoterol stimulating responses via the catecholamine formation whereas alprenolol, SR58230A and CGP12177 utilise the secondary conformation [3].
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Comments:  Agonist stimulated Gs coupling leads to stimulation of adenylyl cyclase (AC) and causes the conversion of ATP into cAMP. This activates protein kinase A (PKA) that in adipocytes leads to phosphorylation and activation of the hormone sensitive lipase and perilipins. Other kinases including ERK1/2, p38MAPK and AMP kinases may also be activated and PKA may be involved. In other tissues such as gut cAMP generation leads to relaxation.
References:  18,22,51,73,82
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Guanylate cyclase stimulation
Comments:  β3-ARs can also couple to Gi to inhibit adenylyl cyclase activity and reduce cAMP levels in some systems. βγ subunits from Gi are also likely involved in ERK1/2 phosphorylation following β3-AR activation. β3-ARs can also stimulate nitric oxide production through the activation of endothelial nitric oxide synthase. Nitric oxide activates guanylyl cyclase and increases cGMP levels.
References:  22,30,37,54,73,93,97
Tissue Distribution Click here for help
Endothelium of coronary microarteries.
Species:  Human
Technique:  Immunohistochemistry.
References:  25
Brown adipose tissue.
Species:  Human
Technique:  PCR.
References:  53
Bladder.
Species:  Human
Technique:  Relaxation of bladder smooth muscle.
References:  75
Prostate.
Species:  Human
Technique:  RT-PCR and relaxation of prostate strips.
References:  87
Gall bladder > small intestine > stomach, prostate > adipose tissue > left atrium
Species:  Human
Technique:  RT-PCR and RNase protection assay.
References:  9,50
Bladder, gall bladder, brown adipose tissue.
Species:  Human
Technique:  RT-PCR.
References:  7
Brown adipose tissue.
Species:  Mouse
Technique:  [3H]2-deoxyglucose uptake.
References:  67
White adipose tissue, colon, ileum, cerebral cortex.
Species:  Rat
Technique:  RT-PCR.
References:  73
Internal anal sphincter (IAS) smooth muscle.
Species:  Rat
Technique:  Western blotting.
References:  54
Bladder.
Species:  Rat
Technique:  Relaxation of bladder smooth muscle.
References:  38,75
Adipose tissue.
Species:  Rat
Technique:  Northern blotting.
References:  36
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in CHO-K1 cells stably transfected with the rat β3 receptor.
Species:  Rat
Tissue:  CHO-K1 cells.
Response measured:  cAMP accumulation.
References:  36
Measurement of cAMP levels in human immortalised preadipocytes (PAZ-6 cells) endogenously expressing the β3-adrenoceptor.
Species:  Human
Tissue:  PAZ-6 cells.
Response measured:  cAMP accumulation.
References:  104
Measurement of lypolysis (glycerol release) in human immortalised preadipocytes (PAZ-6 cells) endogenously expressing the β3-adrenoceptor.
Species:  Human
Tissue:  PAZ-6 cells.
Response measured:  Glycerol release.
References:  104
Measurement of cAMP levels in CHO cells stably transfected with the human β3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  cAMP accumulation.
References:  5,29,40,60,62
Measurement of cAMP levels in mouse brown adipocytes in culture.
Species:  Mouse
Tissue:  Brown adipocytes in culture.
Response measured:  cAMP accumulation.
References:  18,24,47
Measurement of nitric oxide release (using diaminofluorescence) and signal transduction (using immunohistochemistry) in human myocardium.
Species:  Human
Tissue:  Myocardium.
Response measured:  NO release, eNOS activation.
References:  13
Presence of β3-AR in brown adipose tissue.
Species:  Mouse
Tissue:  Brown adipocytes in culture.
Response measured:  [3H]2-deoxyglucose uptake.
References:  67
Measurements in CHO cells stably transfected with the human β3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  cAMP accumulation, ERK1/2 and p38MAPK phosphorylation.
References:  77
Measurement of cAMP levels in CHO cells stably transfected with the mouse β3-AR splice variants.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  cAMP accumulation.
References:  43
Measurement of mechanical and electrical responses of endomyocardium.
Species:  Human
Tissue:  Endomyocardial biopsies obtained form the right interventricular septum.
Response measured:  Increase in peak tension and ecrease in amplitude of the action potential and acceleration of the repolarisation phase when exposed to β3-AR agonists..
References:  34
Measurement of glucose uptake in brown adipocytes in culture.
Species:  Mouse
Tissue:  Brown adipocytes in culture.
Response measured:  [3H] 2 deoxy glucose uptake.
References:  67
Physiological Functions Click here for help
Lipolysis (glycerol release).
Species:  Mouse
Tissue:  3T3-F442A-derived adipocytes.
References:  62
Lipolysis (glycerol release).
Species:  Rat
Tissue:  White adipocytes.
References:  35
Relaxation of rat abdominal aorta smooth muscle.
Species:  Rat
Tissue:  Abdominal aorta smooth muscle.
References:  57
Glucose uptake.
Species:  Mouse
Tissue:  Brown adipocytes in culture.
References:  18
All of the β-adrenoceptors cause relaxation of the internal anal sphincter (IAS).
Species:  Rat
Tissue:  Internal anal sphincter (IAS).
References:  54
Relaxation of colon and oesophagus.
Species:  Mouse
Tissue:  Colon, oesophagus.
References:  68
Negative inotropic effect.
Species:  Human
Tissue:  Heart.
References:  34
Relaxation.
Species:  Human
Tissue:  Myometrium.
References:  74
Decrease in gastrointestinal motility.
Species:  Mouse
Tissue:  Small intestine and stomach.
References:  32
Vasodilatation via nitric oxide and vessel hyperpolarisation.
Species:  Human
Tissue:  Coronary resistance arteries.
References:  25
Lipolysis, thermogenesis.
Species:  Human
Tissue:  Brown fat.
References:  7,17,46
Lipolysis.
Species:  Human
Tissue:  White fat.
References:  7,55,90
Relaxation.
Species:  Human
Tissue:  Smooth muscle cells isolated from the colon.
References:  6,80
Relaxation of taenia coli.
Species:  Human
Tissue:  Taenia coli.
References:  72
Relaxation of ileum.
Species:  Rat
Tissue:  Ileum.
References:  73
Bladder relaxation.
Species:  Human
Tissue:  Urinary bladder.
References:  7,75
Gall bladder relaxation.
Species:  Human
Tissue:  Gall bladder.
References:  7
Lipolysis, thermogenesis.
Species:  Mouse
Tissue:  Brown fat.
References:  8
Memory consolidation.
Species:  Mouse
Tissue:  Brain.
References:  84
Physiological Consequences of Altering Gene Expression Click here for help
Cadiac overexpression of the human β3-adrenoceptor results in positive inotropy.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  49
Cardiac specific overexpression of the mouse β3-adrenoceptor produces the same negative inotropic effects as seen in human ventricular tissue.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  91
In β3-adrenoceptor knockout mice, activation of β1 receptors compensates for the lack of β3 receptor and causes relaxation of colon and oesophagus muscle, as in the wild-type.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  68
β3-adrenoceptor knockout mice exhibit the same amount of glucose uptake as wildtype mice, showing that the β1 receptor (and to a smaller degree the α1-adrenoceptor) functionally compensates for the lack of β3 receptors, despite there being no change in β1 or α1 gene expression.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  19
Cardiac β3-AR protect from fibrosis in response to haemodynamic stress by modulating nitric oxide and oxidant stress-dependent paracrine signaling to fibroblasts.
Species:  Mouse
Tissue:  Heart.
Technique:  Myocyte-specific expression of β3-AR or tamoxifen-inducible homozygous deletion (c-Adrb3-ko).
References:  39
Memory consolidation.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  84
β3-adrenoceptor knockout mice exhibit a complete loss of β3 agonist-induced adenylyl cyclase activity and lipolysis. They also have an increase in fat storage, suggesting that the β3 subtype has a role in energy balance regulation. There appears to be cross-talk between β1 and β3 gene expression, shown by an upregulation of β1 receptor expression in white and brown adipose tissue of knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  86
β3-AR knockout mice display a loss of metabolic effects to the β3-AR agonist mirabegron.
Species:  Mouse
Tissue:  Brown and brite adipocytes.
Technique:  Gene targeting in embryonic stem cells.
References:  24
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001777 abnormal body temperature regulation PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0002971 abnormal brown adipose tissue morphology PMID: 12161655 
Adrb3tm1Lowl Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S4/SvJae * FVB/N
MGI:87939  MP:0008872 abnormal physiological response to xenobiotic PMID: 7493988 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005290 decreased oxygen consumption PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001260 increased body weight PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009119 increased brown fat cell size PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005669 increased circulating leptin level PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009294 increased interscapular fat pad weight PMID: 12161655 
Adrb3tm1Lowl Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S4/SvJae * FVB/N
MGI:87939  MP:0009300 increased parametrial fat pad weight PMID: 7493988 
Adrb3tm1Jpg Adrb3tm1Jpg/Adrb3tm1Jpg
involves: 129S4/SvJae * C57BL/6J
MGI:87939  MP:0005458 increased percent body fat PMID: 9276726 
Adrb3tm1Jpg Adrb3tm1Jpg/Adrb3tm1Jpg
involves: 129S4/SvJae * C57BL/6J
MGI:87939  MP:0005455 increased susceptibility to weight gain PMID: 9276726 
Adrb3tm1Lowl Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S4/SvJae * FVB/N
MGI:87939  MP:0010024 increased total body fat amount PMID: 7493988 
Adrb3tm1Jpg Adrb3tm1Jpg/Adrb3tm1Jpg
involves: 129S4/SvJae * C57BL/6J
MGI:87939  MP:0010024 increased total body fat amount PMID: 9276726 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0010024 increased total body fat amount PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001261 obese PMID: 12161655 
Adrb3tm1Jpg Adrb3tm1Jpg/Adrb3tm1Jpg
involves: 129S4/SvJae * C57BL/6J
MGI:87939  MP:0001433 polyphagia PMID: 9276726 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with impaired insulin secretion.
References:  20
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with earlier onset of non-insulin-dependent diabetes mellitus and reduced metabolic rate.
References:  98
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with hypertension.
References:  92
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with a lower resting autonomic nervous system activity.
References:  81
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with mild gestational diabetes mellitus.
References:  31
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with an increased sensitivity to noradrenaline and an influence on blood triacylglycerol levels.
References:  58
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with insulin resistance.
References:  99
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is associated with accelerated age-related decreases in BAT activity.
References:  102
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A Trp64 -> Arg single nucleotide polymorphism has been identified in humans.
The major consequence of this natural mutation is the reduced lipolytic activity and subsequent association with an increased obesity risk.
Some papers report no effect on lypolytic activity (see reference 211).
Reference 279 reports the interation between this β3-adrenoceptor polymorphism and the Pro12 -> Ala polymorphism of PPARγ2.
References:  21,48,65,71,83,95,103
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Two novelβ3-AR (ADRB3) gene polymorphisms (Ser165Pro and Ser257Pro) are associated with type 2 diabetes (T2DM) in the Chinese population.
References:  42
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Trp64 -> Arg polymorphism is weakly associated with over-active bladder syndrome.
References:  41
General Comments
For a review on the β-adrenoceptor polymorphisms see reference [52], however it should be noted that many of the reported polymorphisms associated with obesity and diabetes have not been consistently reproduced.

References

Show »

1. Aparici M, Gómez-Angelats M, Vilella D, Otal R, Carcasona C, Viñals M, Ramos I, Gavaldà A, De Alba J, Gras J et al.. (2012) Pharmacological characterization of abediterol, a novel inhaled β(2)-adrenoceptor agonist with long duration of action and a favorable safety profile in preclinical models. J Pharmacol Exp Ther, 342 (2): 497-509. [PMID:22588259]

2. Arch JR. (2011) Challenges in β(3)-Adrenoceptor Agonist Drug Development. Ther Adv Endocrinol Metab, 2 (2): 59-64. [PMID:23148171]

3. Baker JG. (2005) Evidence for a secondary state of the human beta3-adrenoceptor. Mol Pharmacol, 68 (6): 1645-55. [PMID:16129733]

4. Baker JG. (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol, 144 (3): 317-22. [PMID:15655528]

5. Baker JG. (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol, 160 (5): 1048-61. [PMID:20590599]

6. Bardou M, Dousset B, Deneux-Tharaux C, Smadja C, Naline E, Chaput JC, Naveau S, Manara L, Croci T, Advenier C. (1998) In vitro inhibition of human colonic motility with SR 59119A and SR 59104A: evidence of a beta3-adrenoceptor-mediated effect. Eur J Pharmacol, 353 (2-3): 281-7. [PMID:9726658]

7. Baskin AS, Linderman JD, Brychta RJ, McGehee S, Anflick-Chames E, Cero C, Johnson JW, O'Mara AE, Fletcher LA, Leitner BP et al.. (2018) Regulation of Human Adipose Tissue Activation, Gallbladder Size, and Bile Acid Metabolism by a β3-Adrenergic Receptor Agonist. Diabetes, 67 (10): 2113-2125. [PMID:29980535]

8. Berbée JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C et al.. (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun, 6: 6356. [PMID:25754609]

9. Berkowitz DE, Nardone NA, Smiley RM, Price DT, Kreutter DK, Fremeau RT, Schwinn DA. (1995) Distribution of beta 3-adrenoceptor mRNA in human tissues. Eur J Pharmacol, 289: 223-228. [PMID:7621895]

10. Blin N, Camoin L, Maigret B, Strosberg AD. (1993) Structural and conformational features determining selective signal transduction in the beta 3-adrenergic receptor. Mol Pharmacol, 44 (6): 1094-104. [PMID:7903415]

11. Blin N, Nahmias C, Drumare MF, Strosberg AD. (1994) Mediation of most atypical effects by species homologues of the beta 3-adrenoceptor. Br J Pharmacol, 112 (3): 911-9. [PMID:7921620]

12. Breit A, Lagacé M, Bouvier M. (2004) Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. J Biol Chem, 279 (27): 28756-65. [PMID:15123695]

13. Brixius K, Bloch W, Pott C, Napp A, Krahwinkel A, Ziskoven C, Koriller M, Mehlhorn U, Hescheler J, Fleischmann B et al.. (2004) Mechanisms of beta 3-adrenoceptor-induced eNOS activation in right atrial and left ventricular human myocardium. Br J Pharmacol, 143 (8): 1014-22. [PMID:15466444]

14. Brucker BM, King J, Mudd Jr PN, McHale K. (2022) Selectivity and Maximum Response of Vibegron and Mirabegron for β3-Adrenergic Receptors. Curr Ther Res Clin Exp, 96: 100674. [PMID:35693456]

15. Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE. (1999) Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther, 290 (2): 649-55. [PMID:10411574]

16. Cao W, Luttrell LM, Medvedev AV, Pierce KL, Daniel KW, Dixon TM, Lefkowitz RJ, Collins S. (2000) Direct binding of activated c-Src to the beta 3-adrenergic receptor is required for MAP kinase activation. J Biol Chem, 275 (49): 38131-4. [PMID:11013230]

17. Cero C, Lea HJ, Zhu KY, Shamsi F, Tseng YH, Cypess AM. (2021) β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight, 6 (11). [PMID:34100382]

18. Chernogubova E, Cannon B, Bengtsson T. (2004) Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology, 145: 269-280. [PMID:14551227]

19. Chernogubova E, Hutchinson DS, Nedergaard J, Bengtsson T. (2005) Alpha1- and beta1-adrenoceptor signaling fully compensates for beta3-adrenoceptor deficiency in brown adipocyte norepinephrine-stimulated glucose uptake. Endocrinology, 146 (5): 2271-84. [PMID:15665039]

20. Christiansen C, Poulsen P, Beck-Nielsen H. (1999) The Trp64Arg mutation of the adrenergic beta-3 receptor gene impairs insulin secretion: a twin study. Diabet Med, 16 (10): 835-40. [PMID:10547210]

21. Clement K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, Silver KD, Shuldiner AR, Froguel P, Strosberg AD. (1995) Genetic variation in the beta 3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med, 333: 352-354. [PMID:7609752]

22. Collins S. (2011) β-Adrenoceptor Signaling Networks in Adipocytes for Recruiting Stored Fat and Energy Expenditure. Front Endocrinol (Lausanne), 2: 102. [PMID:22654837]

23. De Ponti F, Gibelli G, Croci T, Arcidiaco M, Crema F, Manara L. (1996) Functional evidence of atypical beta 3-adrenoceptors in the human colon using the beta 3-selective adrenoceptor antagonist, SR 59230A. Br J Pharmacol, 117 (7): 1374-6. [PMID:8730727]

24. Dehvari N, Sato M, Bokhari MH, Kalinovich A, Ham S, Gao J, Nguyen HTM, Whiting L, Mukaida S, Merlin J et al.. (2020) The metabolic effects of mirabegron are mediated primarily by β3 -adrenoceptors. Pharmacol Res Perspect, 8 (5): e00643. [PMID:32813332]

25. Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand JL. (2004) Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation, 110 (8): 948-54. [PMID:15302798]

26. Di Salvo J, Nagabukuro H, Wickham LA, Abbadie C, DeMartino JA, Fitzmaurice A, Gichuru L, Kulick A, Donnelly MJ, Jochnowitz N et al.. (2017) Pharmacological Characterization of a Novel Beta 3 Adrenergic Agonist, Vibegron: Evaluation of Antimuscarinic Receptor Selectivity for Combination Therapy for Overactive Bladder. J Pharmacol Exp Ther, 360 (2): 346-355. [PMID:27965369]

27. Dolan JA, Muenkel HA, Burns MG, Pellegrino SM, Fraser CM, Pietri F, Strosberg AD, Largis EE, Dutia MD, Bloom JD et al.. (1994) Beta-3 adrenoceptor selectivity of the dioxolane dicarboxylate phenethanolamines. J Pharmacol Exp Ther, 269 (3): 1000-6. [PMID:7912272]

28. Edmondson SD, Zhu C, Kar NF, Di Salvo J, Nagabukuro H, Sacre-Salem B, Dingley K, Berger R, Goble SD, Morriello G et al.. (2016) Discovery of Vibegron: A Potent and Selective β3 Adrenergic Receptor Agonist for the Treatment of Overactive Bladder. J Med Chem, 59 (2): 609-23. [PMID:26709102]

29. Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD. (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science, 245 (4922): 1118-21. [PMID:2570461]

30. Feng MG, Prieto MC, Navar LG. (2012) Nebivolol-induced vasodilation of renal afferent arterioles involves β3-adrenergic receptor and nitric oxide synthase activation. Am J Physiol Renal Physiol, 303 (5): F775-82. [PMID:22674024]

31. Festa A, Krugluger W, Shnawa N, Hopmeier P, Haffner SM, Schernthaner G. (1999) Trp64Arg polymorphism of the beta3-adrenergic receptor gene in pregnancy: association with mild gestational diabetes mellitus. J Clin Endocrinol Metab, 84 (5): 1695-9. [PMID:10323402]

32. Fletcher DS, Candelore MR, Grujic D, Lowell BB, Luell S, Susulic VS, Macintyre DE. (1998) Beta-3 adrenergic receptor agonists cause an increase in gastrointestinal transit time in wild-type mice, but not in mice lacking the beta-3 adrenergic receptor. J Pharmacol Exp Ther, 287 (2): 720-4. [PMID:9808702]

33. Frazier EP, Michel-Reher MB, van Loenen P, Sand C, Schneider T, Peters SL, Michel MC. (2011) Lack of evidence that nebivolol is a β₃-adrenoceptor agonist. Eur J Pharmacol, 654 (1): 86-91. [PMID:21172342]

34. Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H. (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest, 98 (2): 556-62. [PMID:8755668]

35. Germack R, Starzec AB, Vassy R, Perret GY. (1997) Beta-adrenoceptor subtype expression and function in rat white adipocytes. Br J Pharmacol, 120 (2): 201-10. [PMID:9117110]

36. Granneman JG, Lahners KN, Chaudhry A. (1991) Molecular cloning and expression of the rat beta 3-adrenergic receptor. Mol Pharmacol, 40: 895-899. [PMID:1684635]

37. Hadi T, Barrichon M, Mourtialon P, Wendremaire M, Garrido C, Sagot P, Bardou M, Lirussi F. (2013) Biphasic Erk1/2 activation sequentially involving Gs and Gi signaling is required in beta3-adrenergic receptor-induced primary smooth muscle cell proliferation. Biochim Biophys Acta, 1833 (5): 1041-51. [PMID:23388888]

38. Hatanaka T, Ukai M, Watanabe M, Someya A, Ohtake A, Suzuki M, Ueshima K, Sato S, Sasamata M. (2013) In vitro and in vivo pharmacological profile of the selective β3-adrenoceptor agonist mirabegron in rats. Naunyn Schmiedebergs Arch Pharmacol, 386 (3): 247-53. [PMID:23239087]

39. Hermida N, Michel L, Esfahani H, Dubois-Deruy E, Hammond J, Bouzin C, Markl A, Colin H, Steenbergen AV, De Meester C et al.. (2018) Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling. Eur Heart J, 39 (10): 888-898. [PMID:29106524]

40. Hoffmann C, Leitz MR, Oberdorf-Maass S, Lohse MJ, Klotz KN. (2004) Comparative pharmacology of human beta-adrenergic receptor subtypes--characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol, 369 (2): 151-9. [PMID:14730417]

41. Honda K, Yamaguchi O, Nomiya M, Shishido K, Ishibashi K, Takahashi N, Aikawa K. (2014) Association between polymorphism of beta3-adrenoceptor gene and overactive bladder. Neurourol Urodyn, 33 (4): 400-2. [PMID:24038238]

42. Huang Q, Yang TL, Tang BS, Chen X, Huang X, Luo XH, Zhu YS, Chen XP, Hu PC, Chen J et al.. (2013) Two novel functional single nucleotide polymorphisms of ADRB3 are associated with type 2 diabetes in the Chinese population. J Clin Endocrinol Metab, 98 (7): E1272-7. [PMID:23640967]

43. Hutchinson DS, Bengtsson T, Evans BA, Summers RJ. (2002) Mouse beta 3a- and beta 3b-adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. Br J Pharmacol, 135 (8): 1903-14. [PMID:11959793]

44. Hutchinson DS, Chernogubova E, Sato M, Summers RJ, Bengtsson T. (2006) Agonist effects of zinterol at the mouse and human beta(3)-adrenoceptor. Naunyn Schmiedebergs Arch Pharmacol, 373 (2): 158-68. [PMID:16601951]

45. Igawa Y, Michel MC. (2013) Pharmacological profile of β3-adrenoceptor agonists in clinical development for the treatment of overactive bladder syndrome. Naunyn Schmiedebergs Arch Pharmacol, 386 (3): 177-83. [PMID:23263450]

46. Jockers R, Issad T, Zilberfarb V, de Coppet P, Marullo S, Strosberg AD. (1998) Desensitization of the beta-adrenergic response in human brown adipocytes. Endocrinology, 139: 2676-2684. [PMID:9607772]

47. Kannabiran SA, Gosejacob D, Niemann B, Nikolaev VO, Pfeifer A. (2020) Real-time monitoring of cAMP in brown adipocytes reveals differential compartmentation of β1 and β3-adrenoceptor signalling. Mol Metab, 37: 100986. [PMID:32247064]

48. Kimura K, Sasaki N, Asano A, Mizukami J, Kayahashi S, Kawada T, Fushiki T, Morimatsu M, Yoshida T, Saito M. (2000) Mutated human beta3-adrenergic receptor (Trp64Arg) lowers the response to beta3-adrenergic agonists in transfected 3T3-L1 preadipocytes. Horm Metab Res, 32 (3): 91-6. [PMID:10786926]

49. Kohout TA, Takaoka H, McDonald PH, Perry SJ, Mao L, Lefkowitz RJ, Rockman HA. (2001) Augmentation of cardiac contractility mediated by the human beta(3)-adrenergic receptor overexpressed in the hearts of transgenic mice. Circulation, 104 (20): 2485-91. [PMID:11705829]

50. Krief S, Lonnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P, Strosberg AD, Ricquier D, Emorine LJ. (1993) Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest, 91: 344-349. [PMID:8380813]

51. Large V, Arner P, Reynisdottir S, Grober J, Van Harmelen V, Holm C, Langin D. (1998) Hormone-sensitive lipase expression and activity in relation to lipolysis in human fat cells. J Lipid Res, 39: 1688-1695. [PMID:9717730]

52. Leineweber K, Büscher R, Bruck H, Brodde OE. (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol, 369 (1): 1-22. [PMID:14647973]

53. Lelias JM, Kaghad M, Rodriguez M, Chalon P, Bonnin J, Dupre I, Delpech B, Bensaid M, LeFur G, Ferrara P et al.. (1993) Molecular cloning of a human beta 3-adrenergic receptor cDNA. FEBS Lett, 324 (2): 127-30. [PMID:8389717]

54. Li F, De Godoy M, Rattan S. (2004) Role of adenylate and guanylate cyclases in beta1-, beta2-, and beta3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle. J Pharmacol Exp Ther, 308 (3): 1111-20. [PMID:14711933]

55. Lonnqvist F, Krief S, Strosberg AD, Nyberg S, Emorine LJ, Arner P. (1993) Evidence for a functional beta 3-adrenoceptor in man. Br J Pharmacol, 110: 929-936. [PMID:7905344]

56. Louis SN, Nero TL, Iakovidis D, Jackman GP, Louis WJ. (1999) LK 204-545, a highly selective beta1-adrenoceptor antagonist at human beta-adrenoceptors. Eur J Pharmacol, 367 (2-3): 431-5. [PMID:10079020]

57. Matsushita M, Horinouchi T, Tanaka Y, Tsuru H, Koike K. (2003) Characterization of beta 3-adrenoceptor-mediated relaxation in rat abdominal aorta smooth muscle. Eur J Pharmacol, 482 (1-3): 235-44. [PMID:14660028]

58. Melis MG, Secchi G, Brizzi P, Severino C, Maioli M, Tonolo G. (2002) The Trp64Arg beta3-adrenergic receptor amino acid variant confers increased sensitivity to the pressor effects of noradrenaline in Sardinian subjects. Clin Sci, 103 (4): 397-402. [PMID:12241539]

59. Michel MC, Korstanje C. (2016) β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther, 159: 66-82. [PMID:26808167]

60. Molenaar P, Sarsero D, Arch JR, Kelly J, Henson SM, Kaumann AJ. (1997) Effects of (-)-RO363 at human atrial beta-adrenoceptor subtypes, the human cloned beta 3-adrenoceptor and rodent intestinal beta 3-adrenoceptors. Br J Pharmacol, 120 (2): 165-76. [PMID:9117106]

61. Muzzin P, Revelli JP, Kuhne F, Gocayne JD, McCombie WR, Venter JC, Giacobino JP, Fraser CM. (1991) An adipose tissue-specific beta-adrenergic receptor. Molecular cloning and down-regulation in obesity. J Biol Chem, 266 (35): 24053-8. [PMID:1721063]

62. Méjean A, Guillaume JL, Strosberg AD. (1995) Carazolol: a potent, selective beta 3-adrenoceptor agonist. Eur J Pharmacol, 291 (3): 359-66. [PMID:8719421]

63. Nagiri C, Kobayashi K, Tomita A, Kato M, Kobayashi K, Yamashita K, Nishizawa T, Inoue A, Shihoya W, Nureki O. (2021) Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity. Mol Cell, 81 (15): 3205-3215.e5. [PMID:34314699]

64. Nahmias C, Blin N, Elalouf JM, Mattei MG, Strosberg AD, Emorine LJ. (1991) Molecular characterization of the mouse beta 3-adrenergic receptor: relationship with the atypical receptor of adipocytes. EMBO J, 10 (12): 3721-7. [PMID:1718744]

65. Ochoa MC, Marti A, Azcona C, Chueca M, Oyarzábal M, Pelach R, Patiño A, Moreno-Aliaga MJ, Martínez-González MA, Martínez JA et al.. (2004) Gene-gene interaction between PPAR gamma 2 and ADR beta 3 increases obesity risk in children and adolescents. Int J Obes Relat Metab Disord, 28 Suppl 3: S37-41. [PMID:15543217]

66. Okeke K, Angers S, Bouvier M, Michel MC. (2019) Agonist-induced desensitisation of β3 -adrenoceptors: Where, when, and how?. Br J Pharmacol, 176 (14): 2539-2558. [PMID:30809805]

67. Olsen JM, Sato M, Dallner OS, Sandström AL, Pisani DF, Chambard JC, Amri EZ, Hutchinson DS, Bengtsson T. (2014) Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J Cell Biol, 207 (3): 365-74. [PMID:25385184]

68. Oostendorp J, Preitner F, Moffatt J, Jimenez M, Giacobino JP, Molenaar P, Kaumann AJ. (2000) Contribution of beta-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wildtype and beta(3)-adrenoceptor knockout mice. Br J Pharmacol, 130 (4): 747-58. [PMID:10864880]

69. Piétri-Rouxel F, Lenzen G, Kapoor A, Drumare MF, Archimbault P, Strosberg AD, Manning BS. (1995) Molecular cloning and pharmacological characterization of the bovine beta 3-adrenergic receptor. Eur J Biochem, 230 (1): 350-8. [PMID:7601122]

70. Popp BD, Hutchinson DS, Evans BA, Summers RJ. (2004) Stereoselectivity for interactions of agonists and antagonists at mouse, rat and human beta3-adrenoceptors. Eur J Pharmacol, 484 (2-3): 323-31. [PMID:14744619]

71. Ramis JM, González-Sánchez JL, Proenza AM, Martínez-Larrad MT, Fernández-Pérez C, Palou A, Serrano-Ríos M. (2004) The Arg64 allele of the beta 3-adrenoceptor gene but not the -3826G allele of the uncoupling protein 1 gene is associated with increased leptin levels in the Spanish population. Metab Clin Exp, 53 (11): 1411-6. [PMID:15536594]

72. Roberts SJ, Papaioannou M, Evans BA, Summers RJ. (1997) Functional and molecular evidence for beta 1-, beta 2- and beta 3- adrenoceptors in human colon. Br J Pharmacol, 120 (8): 1527-35. [PMID:9113375]

73. Roberts SJ, Papaioannou M, Evans BA, Summers RJ. (1999) Characterization of beta-adrenoceptor mediated smooth muscle relaxation and the detection of mRNA for beta1-, beta2- and beta3-adrenoceptors in rat ileum. Br J Pharmacol, 127 (4): 949-61. [PMID:10433503]

74. Rouget C, Bardou M, Breuiller-Fouché M, Loustalot C, Qi H, Naline E, Croci T, Cabrol D, Advenier C, Leroy MJ. (2005) Beta3-adrenoceptor is the predominant beta-adrenoceptor subtype in human myometrium and its expression is up-regulated in pregnancy. J Clin Endocrinol Metab, 90 (3): 1644-50. [PMID:15585565]

75. Rouget C, Rekik M, Camparo P, Botto H, Rischmann P, Lluel P, Palea S, Westfall TD. (2014) Modulation of nerve-evoked contractions by β3-adrenoceptor agonism in human and rat isolated urinary bladder. Pharmacol Res, 80: 14-20. [PMID:24378642]

76. Sato M, Horinouchi T, Hutchinson DS, Evans BA, Summers RJ. (2007) Ligand-directed signaling at the beta3-adrenoceptor produced by 3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol, 72 (5): 1359-68. [PMID:17717109]

77. Sato M, Hutchinson DS, Evans BA, Summers RJ. (2008) The beta3-adrenoceptor agonist 4-[[(Hexylamino)carbonyl]amino]-N-[4-[2-[[(2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-phenyl]-benzenesulfonamide (L755507) and antagonist (S)-N-[4-[2-[[3-[3-(acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]-ethyl]phenyl]benzenesulfonamide (L748337) activate different signaling pathways in Chinese hamster ovary-K1 cells stably expressing the human beta3-adrenoceptor. Mol Pharmacol, 74 (5): 1417-28. [PMID:18684840]

78. Sato M, Hutchinson DS, Halls ML, Furness SG, Bengtsson T, Evans BA, Summers RJ. (2012) Interaction with caveolin-1 modulates G protein coupling of mouse β3-adrenoceptor. J Biol Chem, 287 (24): 20674-88. [PMID:22535965]

79. Sato Y, Kurose H, Isogaya M, Nagao T. (1996) Molecular characterization of pharmacological properties of T-0509 for beta-adrenoceptors. Eur J Pharmacol, 315 (3): 363-7. [PMID:8982677]

80. Severi C, Tattoli I, Romano G, Corleto VD, Delle Fave G. (2004) Beta3-adrenoceptors: relaxant function and mRNA detection in smooth muscle cells isolated from the human colon. Can J Physiol Pharmacol, 82 (7): 515-22. [PMID:15389299]

81. Shihara N, Yasuda K, Moritani T, Ue H, Adachi T, Tanaka H, Tsuda K, Seino Y. (1999) The association between Trp64Arg polymorphism of the beta3-adrenergic receptor and autonomic nervous system activity. J Clin Endocrinol Metab, 84 (5): 1623-7. [PMID:10323390]

82. Skeberdis VA, Jurevicius J, Fischmeister R. (1999) b3-adrenergic regulation of cardiac L-type Ca2+ current in human atrial myocytes. Biophys J, 76: A343-A343.

83. Snitker S, Odeleye OE, Hellmer J, Boschmann M, Monroe MB, Shuldiner AR, Ravussin E. (1997) No effect of the Trp64Arg beta 3-adrenoceptor variant on in vivo lipolysis in subcutaneous adipose tissue. Diabetologia, 40: 838-842. [PMID:9243106]

84. Souza-Braga P, Lorena FB, Nascimento BPP, Marcelino CP, Ravache TT, Ricci E, Bernardi MM, Ribeiro MO. (2018) Adrenergic receptor β3 is involved in the memory consolidation process in mice. Braz J Med Biol Res, 51 (10): e7564. [PMID:30088540]

85. Strosberg AD. (1997) Structure and function of the beta 3-adrenergic receptor. Annu Rev Pharmacol Toxicol, 37: 421-50. [PMID:9131260]

86. Susulic VS, Frederich RC, Lawitts J, Tozzo E, Kahn BB, Harper ME, Himms-Hagen J, Flier JS, Lowell BB. (1995) Targeted disruption of the beta 3-adrenergic receptor gene. J Biol Chem, 270 (49): 29483-92. [PMID:7493988]

87. Suzuki T, Otsuka A, Matsumoto R, Furuse H, Ozono S. (2016) The expression of β3-adrenoceptors and their function in the human prostate. Prostate, 76 (2): 163-71. [PMID:26768278]

88. Takasu T, Ukai M, Sato S, Matsui T, Nagase I, Maruyama T, Sasamata M, Miyata K, Uchida H, Yamaguchi O. (2007) Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. J Pharmacol Exp Ther, 321 (2): 642-7. [PMID:17293563]

89. Tate KM, Briend-Sutren MM, Emorine LJ, Delavier-Klutchko C, Marullo S, Strosberg AD. (1991) Expression of three human beta-adrenergic-receptor subtypes in transfected Chinese hamster ovary cells. Eur J Biochem, 196 (2): 357-61. [PMID:1848818]

90. Tavernier G, Barbe P, Galitzky J, Berlan M, Caput D, Lafontan M, Langin D. (1996) Expression of beta3-adrenoceptors with low lipolytic action in human subcutaneous white adipocytes. J Lipid Res, 37 (1): 87-97. [PMID:8820105]

91. Tavernier G, Toumaniantz G, Erfanian M, Heymann MF, Laurent K, Langin D, Gauthier C. (2003) beta3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human beta3-adrenergic receptor. Cardiovasc Res, 59 (2): 288-96. [PMID:12909312]

92. Tonolo G, Melis MG, Secchi G, Atzeni MM, Angius MF, Carboni A, Ciccarese M, Malavasi A, Maioli M. (1999) Association of Trp64Arg beta 3-adrenergic-receptor gene polymorphism with essential hypertension in the Sardinian population. J Hypertens, 17 (1): 33-8. [PMID:10100091]

93. Trochu JN, Leblais V, Rautureau Y, Bévérelli F, Le Marec H, Berdeaux A, Gauthier C. (1999) Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br J Pharmacol, 128 (1): 69-76. [PMID:10498836]

94. Uehling DE, Shearer BG, Donaldson KH, Chao EY, Deaton DN, Adkison KK, Brown KK, Cariello NF, Faison WL, Lancaster ME et al.. (2006) Biarylaniline phenethanolamines as potent and selective beta3 adrenergic receptor agonists. J Med Chem, 49 (9): 2758-71. [PMID:16640337]

95. Umekawa T, Yoshida T, Sakane N, Kogure A, Kondo M, Honjyo H. (1999) Trp64Arg mutation of beta3-adrenoceptor gene deteriorates lipolysis induced by beta3-adrenoceptor agonist in human omental adipocytes. Diabetes, 48 (1): 117-20. [PMID:9892231]

96. van Wieringen JP, Michel-Reher MB, Hatanaka T, Ueshima K, Michel MC. (2013) The new radioligand [(3)H]-L 748,337 differentially labels human and rat β3-adrenoceptors. Eur J Pharmacol, 720 (1-3): 124-30. [PMID:24183974]

97. Varghese P, Harrison RW, Lofthouse RA, Georgakopoulos D, Berkowitz DE, Hare JM. (2000) beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. J Clin Invest, 106 (5): 697-703. [PMID:10974023]

98. Walston J, Silver K, Bogardus C, Knowler WC, Celi FS, Austin S, Manning B, Strosberg AD, Stern MP, Raben N, et al.. (1995) Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. N Engl J Med, 333: 343-347. [PMID:7609750]

99. Wang HD, Zhang CS, Li MW, Lin Q, Zhang Q, Liu DF, Ma ZY, Dong J. (2021) The Association of Trp64Arg Polymorphism in the Beta-Adrenergic Receptor With Insulin Resistance: Meta-Analysis. Front Endocrinol (Lausanne), 12: 708139. [PMID:34512548]

100. Weber AE, Ok HO, Alvaro RF, Candelore MR, Cascieri MA, Chiu SH, Deng L, Forrest MJ, Hom GJ, Hutchins JE et al.. (1998) 3-Pyridyloxypropanolamine agonists of the beta 3 adrenergic receptor with improved pharmacokinetic properties. Bioorg Med Chem Lett, 8 (16): 2111-6. [PMID:9873496]

101. Yanagisawa T, Sato T, Yamada H, Sukegawa J, Nunoki K. (2000) Selectivity and potency of agonists for the three subtypes of cloned human beta-adrenoceptors expressed in Chinese hamster ovary cells. Tohoku J Exp Med, 192 (3): 181-93. [PMID:11249148]

102. Yoneshiro T, Ogawa T, Okamoto N, Matsushita M, Aita S, Kameya T, Kawai Y, Iwanaga T, Saito M. (2013) Impact of UCP1 and β3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans. Int J Obes (Lond), 37 (7): 993-8. [PMID:23032405]

103. Zhang Y, Wat N, Stratton IM, Warren-Perry MG, Orho M, Groop L, Turner RC. (1996) UKPDS 19: heterogeneity in NIDDM: separate contributions of IRS-1 and beta 3-adrenergic-receptor mutations to insulin resistance and obesity respectively with no evidence for glycogen synthase gene mutations. UK Prospective Diabetes Study. Diabetologia, 39 (12): 1505-11. [PMID:8960833]

104. Zilberfarb V, Piétri-Rouxel F, Jockers R, Krief S, Delouis C, Issad T, Strosberg AD. (1997) Human immortalized brown adipocytes express functional beta3-adrenoceptor coupled to lipolysis. J Cell Sci, 110 ( Pt 7): 801-7. [PMID:9133667]

Contributors

Show »

How to cite this page