Top ▲

α1A-adrenoceptor

Click here for help

Target id: 22

Nomenclature: α1A-adrenoceptor

Family: Adrenoceptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 466 8p21.2 ADRA1A adrenoceptor alpha 1A
Mouse 7 466 14 D1 Adra1a adrenergic receptor, alpha 1a
Rat 7 466 15p12 Adra1a adrenoceptor alpha 1A
Previous and Unofficial Names Click here for help
α1c | α1a | ADRA1C | ADRA1L1 | adrenergic alpha 1c receptor | adrenergic receptor alpha 1c | alpha 1A-adrenoceptor | alpha 1A-adrenoreceptor | alpha 1C-adrenergic receptor | alpha-1A adrenergic receptor | adrenergic receptor, alpha 1a
Database Links Click here for help
Specialist databases
GPCRdb ada1a_human (Hs), ada1a_mouse (Mm), ada1a_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
(-)-adrenaline
(-)-noradrenaline
Potency order of endogenous ligands (Human)
(-)-noradrenaline = (-)-adrenaline

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
oxymetazoline Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.2 – 8.2 pKi 23,32,52,93,101,115,122,129
pKi 7.2 – 8.2 [23,32,52,93,101,115,122,129]
dabuzalgron Small molecule or natural product Hs Agonist 7.4 pKi 13
pKi 7.4 [13]
A61603 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.8 – 7.5 pKi 23,32,35,65,101
pKi 6.8 – 7.5 [23,32,35,65,101]
naphazoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.5 pKi 101
pKi 6.5 [101]
cirazoline Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.2 – 6.7 pKi 32,101
pKi 6.2 – 6.7 [32,101]
NS-49 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.2 pKi 93
pKi 6.2 [93]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 5.1 – 6.5 pKi 52,101,115,122
pKi 5.1 – 6.5 [52,101,115,122]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Full agonist 4.8 – 6.4 pKi 23,32,52,101,115,122,129
pKi 4.8 – 6.4 [23,32,52,101,115,122,129]
phenylephrine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 4.9 – 5.4 pKi 23,32,101,129
pKi 4.9 – 5.4 [23,32,101,129]
(+)-adrenaline Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.0 pKi 115
pKi 5.0 [115]
methoxamine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 4.6 – 5.2 pKi 23,32,101,115,122,129
pKi 4.6 – 5.2 [23,32,101,115,122,129]
A61603 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 7.5 – 10.3 pEC50 23,32,65,101
pEC50 7.5 – 10.3 [23,32,65,101]
oxymetazoline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 7.2 – 9.3 pEC50 23,32,101
pEC50 7.2 – 9.3 [23,32,101]
cirazoline Small molecule or natural product Click here for species-specific activity table Hs Full agonist 6.9 – 9.2 pEC50 32,101
pEC50 6.9 – 9.2 [32,101]
naphazoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 6.6 – 8.9 pEC50 101
pEC50 6.6 – 8.9 [101]
(-)-adrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 5.6 – 9.1 pEC50 101
pEC50 5.6 – 9.1 [101]
(-)-noradrenaline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 5.5 – 8.6 pEC50 23,32,101
pEC50 5.5 – 8.6 [23,32,101]
phenylephrine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 4.9 – 8.3 pEC50 23,32,101
pEC50 4.9 – 8.3 [23,32,101]
methoxamine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Full agonist 4.4 – 8.1 pEC50 23,32,101
pEC50 4.4 – 8.1 [23,32,101]
Agonist Comments
The first α1A-adrenoceptor to be cloned was the bovine homolog. No species significant differences in pharmacology have been identified.
The approved drug oxymetazoline displays α1A-AR selectivity but profile is complicated by significant actions at α2-AR and 5HT1B receptors [23]. This does not preclude clinically relevant activity at other adrenoceptors. A61603 is highly selective for the α1A-AR [23,32,101].

Note that EC50 values have been determined in a variety of assay formats measuring intracellular Ca2+ release, ERK1/2 phosphorylation, extracellular acidification rate and cAMP accumulation.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
olanzapine Small molecule or natural product Approved drug Click here for species-specific activity table Rn Antagonist 7.4 pA2 92
pA2 7.4 [92]
Description: Measured as antagonism of phenylephrine-induced contraction of endothelium-denuded rat small mesenteric artery.
[125I]HEAT (BE2254) Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.7 – 9.9 pKd 80,93,122
pKd 9.7 – 9.9 [80,93,122]
[3H]prazosin Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Inverse agonist 9.1 pKd 102
pKd 9.1 [102]
NAN 190 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 10.1 pKi 146
pKi 10.1 [146]
tamsulosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.4 – 10.7 pKi 17,24,35,102,104,115,122,138
pKi 9.4 – 10.7 [17,24,35,102,104,115,122,138]
silodosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.6 – 10.4 pKi 102,104,122
pKi 9.6 – 10.4 [102,104,122]
WB 4101 Small molecule or natural product Rn Antagonist 9.5 – 10.2 pKi 54,134
pKi 9.5 – 10.2 [54,134]
upidosin Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.6 pKi 35
pKi 9.6 [35]
RS-100329 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.6 pKi 102,138
pKi 9.6 [102,138]
S(+)-niguldipine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.1 – 10.0 pKi 35,102,122
pKi 9.1 – 10.0 [35,102,122]
prazosin Small molecule or natural product Approved drug Ligand has a PDB structure Rn Inverse agonist 9.5 pKi 134
pKi 9.5 [134]
prazosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Inverse agonist 9.0 – 9.9 pKi 17,24,35,102,122,138
pKi 9.0 – 9.9 [17,24,35,102,122,138]
WB 4101 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.0 – 9.8 pKi 17,24,35,102,122
pKi 9.0 – 9.8 [17,24,35,102,122]
ρ-Da1a Peptide Hs Antagonist 9.2 – 9.5 pKi 80,106
pKi 9.2 – 9.5 [80,106]
S(+)-niguldipine Small molecule or natural product Rn Antagonist 9.3 pKi 134
pKi 9.3 [134]
SNAP5089 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.8 – 9.4 pKi 50,70,102,135
pKi 8.8 – 9.4 [50,70,102,135]
5-methylurapidil Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 – 9.2 pKi 17,35,70,102,113,122,146
pKi 8.9 – 9.2 [17,35,70,102,113,122,146]
5-methylurapidil Small molecule or natural product Rn Antagonist 9.0 pKi 134
pKi 9.0 [134]
Ro-70-0004 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 pKi 138
pKi 8.9 [138]
doxazosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.4 – 9.3 pKi 48,102,104
pKi 8.4 – 9.3 (Ki 5.37x10-10 M) [48,102,104]
RS-17053 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.3 – 9.3 pKi 17,24,34-35,102
pKi 8.3 – 9.3 [17,24,34-35,102]
BODIPY FL-prazosin Small molecule or natural product Ligand is labelled Hs Inverse agonist 8.7 pKi 83
pKi 8.7 (Ki 2x10-9 M) [83]
roxindole Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.6 pKi 86
pKi 8.6 [86]
HEAT (BE2254) Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 8.6 pKi 102
pKi 8.6 [102]
A-119637 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.6 pKi 16
pKi 8.6 [16]
A-119637 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.6 pKi 16
pKi 8.6 [16]
risperidone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.4 – 8.7 pKi 102,146
pKi 8.4 – 8.7 [102,146]
terguride Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.5 pKi 86
pKi 8.5 [86]
A-123189 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 8.5 pKi 16
pKi 8.5 [16]
ritanserin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.4 pKi 146
pKi 8.4 [146]
(+)-cyclazosin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 – 8.9 pKi 39,102
pKi 7.9 – 8.9 [39,102]
A-123189 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.4 pKi 16
pKi 8.4 [16]
indoramin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.4 pKi 24,35,102
pKi 8.4 [24,35,102]
phentolamine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.2 – 8.6 pKi 102,122
pKi 8.2 – 8.6 [102,122]
carvedilol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.4 pKi 102
pKi 8.4 [102]
spiperone Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.3 pKi 146
pKi 8.3 [146]
terazosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.9 – 8.7 pKi 84,102,104
pKi 7.9 – 8.7 (Ki 2x10-9 M) [84,102,104]
clozapine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.1 – 8.3 pKi 102,146
pKi 8.1 – 8.3 [102,146]
ketanserin Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.2 pKi 146
pKi 8.2 [146]
amitriptyline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.2 pKi 102
pKi 8.2 [102]
nortriptyline Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.2 pKi 102
pKi 8.2 [102]
lisuride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 – 8.3 pKi 86,102
pKi 7.9 – 8.3 [86,102]
phentolamine Small molecule or natural product Approved drug Rn Antagonist 8.1 pKi 134
pKi 8.1 [134]
clomipramine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.1 pKi 102
pKi 8.1 [102]
alfuzosin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 7.8 – 8.1 pKi 50,102,104
pKi 7.8 – 8.1 (Ki 8.2x10-9 M) [50,102,104]
KMUP-1 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.7 pKi 76
pKi 7.7 [76]
mianserin Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.6 pKi 146
pKi 7.6 [146]
cyproheptadine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.4 pKi 146
pKi 7.4 [146]
labetalol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.3 pKi 101
pKi 7.3 [101]
spiroxatrine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.9 – 7.3 pKi 102,146
pKi 6.9 – 7.3 [102,146]
BMY-7378 Small molecule or natural product Click here for species-specific activity table Rn Antagonist 7.0 pKi 16
pKi 7.0 [16]
BMY-7378 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.6 – 7.0 pKi 16,102,146
pKi 6.6 – 7.0 [16,102,146]
cabergoline Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 6.5 pKi 86
pKi 6.5 [86]
piribedil Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.1 pKi 86
pKi 6.1 [86]
labetalol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 7.5 – 7.9 pIC50 101
pIC50 7.5 – 7.9 [101]
View species-specific antagonist tables
Antagonist Comments
Compounds such as prazosin and RS-17053 show unexpectedly low potency in certain isolated tissue assays [34-35]. This was postulated to result from a novel α1- adrenoceptor subtype (α1L), but is now thought to result from differences in α1A-AR characteristics dependent on the tissue or assay environment [42,136]. Silodosin, niguldipine, SNAP5089, RS-100329 and Ro-70-0004 are selective for α1A-ARs over the α1B- and α1D-AR subtypes [102,138]. The insurmountable antagonist ρ-Da1a is also α1A-AR subtype selective. Some antidepressants such as amitriptyline and clomipramine are selective for α1A-AR vs. other α1-AR subtypes [102]. BMY-7378 is a partial agonist in some systems [101]. Phenoxybenzamine is an irreversible α1-AR antagonist used to block the pressor effects of catecholamines prior to surgery for phaeochromocytoma. Doxazosin, alfuzosin, prazosin, tamsulosin, terazosin and cyclazosin are selective for α1-ARs vs. α2-ARs. Lisuride behaves as a partial agonist in some systems [101]. Compounds designated as "partial inverse agonists" [85] are listed as neutral antagonists. Bodipy FL-prazosin (QAPB) has been used to examine the cellular localisation of α1-adrenoceptors. Carvedilol is regarded as predominantly a β-AR antagonist, and it is this property that is primarily responsible for its usefulness in treating cardiac failure but it also potently inhibits α1-AR. It is somewhat selective for α1A-AR. Labetalol has similar properties but is less potent and is considered safe for use in pregnancy to treat eclampsia and pre-eclampsia. It also behaves as a partial agonist in some systems.
Allosteric Modulators
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
rho-TIA Peptide Click here for species-specific activity table Rn Negative 5.0 pKi 116
pKi 5.0 (Ki 1x10-5 M) [116]
Allosteric Modulator Comments
Whilst diazepam reduces the potency of phenylephrine to stimulate the inositol phosphate (IP) response in Rat-1 fibroblasts expressing the α1A-AR, no change in the maximum IP response is observed. In contrast, the maximum IP response to clonidine (a weak partial agonist at α1A-AR) is increased by diazepam, midazolam and lorazepam, suggesting that the ability to detect allosteric potentiation is a function of both the intrinsic activity of the α1-AR agonist and the activity of the proposed modulator [133]. Data published by Williams et al. (2018) show that diazepam is not a direct allosteric modulator of α1-adrenoceptors [137], but is able to modulate receptor activity via inhibition of phosphodiesterase 4.

Amiloride analogues increase the dissociation rate of prazosin from the α1A-adrenoceptor [46].

Possible allosteric inhibition has been shown with ρ-TIA, a member of the ρ-conopeptide class of toxins derived from cone snails. ρ-TIA acts as an α1-adrenoceptor antagonist and is able to inhibit the norepinephrine-evoked increases in cytosolic-free calcium concentration and contractility. N-terminally truncated ρ-TIA analogues are less active than the full-length peptide. Upon deletion of the fourth residue of full-length ρ-TIA (in the form of the analogue TIA5-19), antagonist activity is observed at 65% compared to the response observed in full length ρ-TIA [116].
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Calcium channel
Other - See Comments
Comments:  The α1A-adrenoceptor is coupled to calcium release and inositol phosphate production (i.e. to Gq) more efficiently than the other α1-AR subtypes.

The α1A-adrenoceptor is coupled to activation and translocation of Snapin and the TRPC6 channel to the plasma membrane and subsequent increase in Calcium entry and contractility.
References:  46,85
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
G12/G13 family Phospholipase A2 stimulation
Phospholipase D stimulation
Other - See Comments
Comments:  α1-adrenoceptors (all subtypes) can also activate protein kinase C, mitogen activated protein kinases.
G13 coupling observed in transfected CHO cells to regulate arachidonic acid release.
PKCzeta coupling to phospholipase D observed in transfected rat-1 fibroblasts.
α1A- and α1B-adrenoceptors also couple to adenylyl cyclase to increase cAMP [23,101] but agonists have low potency.
References:  46,63,85,99
Tissue Distribution Click here for help
Cauda epididymis.
Species:  Human
Technique:  RT-PCR, receptor binding, inhibition of contraction by selective antagonists.
References:  96
In the human brain, the highest levels of α1A message are found in olfactory system, hypothalamic nuclei and in regions of the brainstem and spinal cord related to motor function. Also expressed in the hippocampus.
Species:  Human
Technique:  in situ hybridisation (including oligonucleotide labelling)
References:  27,126
Dissociated, prostatic smooth muscle cells- plasmalemmal membrane and on intracellular compartments.
Species:  Human
Technique:  Confocal microscopy.
References:  78
High expression levels of α1A-adrenoceptor mRNA are found in the heart, liver, cerebellum and cerebral cortex.
Species:  Human
Technique:  RNase protection assay
References:  100
Prostate
Species:  Human
Technique:  Northern blot, RT PCR, receptor binding
References:  33
Bladder and urethra.
Species:  Human
Technique:  RT PCR, receptor binding
References:  123
Lymphocytes, saphenous vein.
Species:  Human
Technique:  in situ hybridisation
References:  130,143
The α1A-adrenoceptor is the predominant subtype in human prostate and urethra.
Species:  Human
Technique:  Immunohistochemistry.
References:  132
Bladder and urethra.
Species:  Mouse
Technique:  RT PCR, functional responses
References:  6
Glucose uptake into fat, skeletal muscle and heart
Species:  Mouse
Technique:  KO mice and mice expressing a constitutively active α1A-adrenoceptor
References:  121
Expressed in various neurons in the cerebral cortex, hippocampus, hypothalamus, midbrain, cerebellum, spinal cord; GABAergic interneurons and NG2 oligodendrocyte progenitors.
Species:  Mouse
Technique:  Systemic promoter-GFP transgenic model, RT PCR, receptor binding.
References:  18,97
Epididymis.
Species:  Rat
Technique:  Radionucleotide binding, ribonuclease protection assay
References:  105
Renal resistance arteries.
Species:  Rat
Technique:  Radioligand binding
References:  110
Proximal and distal tail artery.
Species:  Rat
Technique:  RT-PCR and functional studies with selective agonists and antagonists
References:  62
Prefrontal cortex.
Species:  Rat
Technique:  in situ hybridisation.
References:  111
Taste buds, left ventricle, aorta, tail and mesenteric arteries.
Species:  Rat
Technique:  RT-PCR
References:  10,79,150
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
α1A-AR differentially couples to STAT3 phosphorylation through PKC epsilon and delta.
Species:  Mouse
Tissue:  Cardiomyocytes.
Response measured:  Receptor coupling to STAT3, JAK2 and SRC.
References:  119
Nuclear α1A-ARs activated ERK localized to caveolae at plasma membrane and receptor oligomerization.
Species:  Mouse
Tissue:  Cardiomyocytes.
Response measured:  Nuclear localization/co-localization, ERK1/2 signaling.
References:  140-141
RGS2 interacts with α1A-AR third intracellular loop to inhibit signal transduction.
Species:  Human
Tissue:  Transfected HEK 293 cells.
Response measured:  Receptor/RGS2 association, IP3 accumulation, radioligand binding.
References:  45
α1A-AR mediated p90 ribosomal S6 kinase activation increases early gene regulation.
Species:  Rat
Tissue:  Heart.
Response measured:  Cardiomyocyte gene expression, pERK1/2, pRSK, cardiomyocyte transcriptome
References:  9
Constitutive internalisation of the α1A-AR.
Species:  Rat
Tissue:  Transfected Rat-1 fibroblasts.
Response measured:  Receptor traffiking with HA tagged α1A-AR/GFP fusion protein, IP3 accumulation.
References:  90
α1A-AR coupling to G proteins is required for second messenger, mitogenic and transcriptional responses.
Species:  Human
Tissue:  Transfected PC12 cells.
Response measured:  G-protein coupling: calcium and inositol phosphate responses, MAK kinase activity, tyrosine kinase Pyk2 activity and transcriptional responses.
References:  69
α1A-AR regulates the secretion of extracellular matrix, cell adhesion and migration.
Species:  Rat
Tissue:  Rat-1 fibroblasts stably transfected with human α1A-AR.
Response measured:  Secretion of hyaluronan, CD44, IL-6, syndecan-4, tenascin-C, increases in cell adhesion and inhibition of cell migration, microarray analysis, PCR.
References:  117
Extracellular loop residues required for α1-AR subtype binding.
Species:  Rat
Tissue:  Transfected COS-1 cells.
Response measured:  Radioligand binding: Q177G, I178V, N179T α1A-AR mutations decrease binding affinity for phentolamine and WB4101.
References:  151
Role of serine interactions for α1A-AR binding and activation.
Species:  Rat
Tissue:  Transfected COS-1 cells.
Response measured:  Radioligand binding, inositol phosphate production, site directed mutagenesis.
References:  57
M292L mutation in the α1A-AR causes constitutive activity.
Species:  Rat
Tissue:  Transfected COS-1 cells.
Response measured:  Phospholipase C and phospholipase A2 activity and agonist potency.
References:  56
α1A-AR differentiates fibroblasts to smooth muscle, induces hypertrophy and cell cycle arrest and alters p27, p21, pRb, cyclin D1, cdk2 & 4, pcna.
Species:  Rat
Tissue:  Transfected rat-1 fibroblasts.
Response measured:  Diffferentiation, hypertrophy and cell cycle arrest.
References:  109
Androgen effects on α1A-AR subtypes in rat seminal vesicle contractile responses.
Species:  Rat
Tissue:  Seminal vesicles.
Response measured:  mRNA by ribonuclease protection, contraction.
References:  82
α1A-AR is the major subtype involved in norepinephrine-induced contraction of mouse ureter.
Species:  Mouse
Tissue:  Isolated ureteral preparations.
Response measured:  mRNA expression, inhibition of norepinephrine mediated contractions by subtype selective α1-AR antagonists.
References:  67
Activation of α1A-AR increases cardiomyocyte shortening and increases myofilament Ca2+ sensitivity which is potentiated by propofol.
Species:  Rat
Tissue:  Primary ventricular cardiomyocytes.
Response measured:  Contraction, Ca2+ levels.
References:  37
Role of α1A-AR in post infarct remodelling, dysfunction and survival.
Species:  Mouse
Tissue:  Heart muscle.
Response measured:  Cardiac specific over expression of α1A-AR (rat), LV shortening, dP/dtmax
References:  30
Isolated Vas deferens.
Species:  Rat
Tissue:  Prostatic and epididymal Vas deferens.
Response measured:  Contraction, [3H]prazosin binding.
References:  94
Pleiotropism of the α1A-AR
Species:  Human
Tissue:  Prostate
Response measured:  Contraction, [3H]prozosin binding, IP3 accumulation.
References:  35
Cell cycle arrest.
Species:  Rat
Tissue:  Transfected Rat-1 fibroblasts.
Response measured:  Activities of CDK-6, cyclin E-associated kinase and cell cycle kinase inhibitor p27Kip1.
References:  40
Heteromeric complex formation between atypical chemokine receptor 3 and α1A-AR.
Species:  Human
Tissue:  hVSMC, HEK293 or CHO cells
Response measured:  Proximity ligation assay, BRET
References:  5,31,38,91
Allosteric modulation of α1A-AR by 9-aminoacridine compounds.
Species:  Human
Tissue:  Transient transfection of COS1 cells.
Response measured:  [3H]prazosin binding, IP3 accumulation
References:  15
α1A-AR endocytic pathway involves ERK but not Gq/PLC/PKC signaling.
Species:  Human
Tissue:  Transfected HEK 293 cells.
Response measured:  ERK 1/2 phosphorylation.
References:  77
α1A-AR is a lipid raft protein and mediates signaling from rafts but exits rafts for internalization through clathrin-coated pits.
Species:  Rat
Tissue:  Rat-1 fibroblasts expressing α1A-AR.
Response measured:  Fluorescence resonance energy transfer and confocal measurement of receptor distribution and internalization.
References:  89
Biased agonism at α1A-AR.
Species:  Human
Tissue:  Stably transfected CHO-K1 cells
Response measured:  Cell membrane [125I]HEAT binding, Ca2+ mobilisation, cAMP accumulation, ERK1/2 phosphorylation, ECAR.
References:  23,32
Selectivity of α-adrenoceptor agonists for the human α1A, α1B- and α1D-adrenoceptors.
Species:  Human
Tissue:  Stably transfected CHO-K1 cells
Response measured:  Whole cell [3H]prazosin binding, Ca2+ mobilisation, cAMP accumulation, ERK1/2 phosphorylation
References:  101
The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors
Species:  Human
Tissue:  Stably transfected CHO-K1 cells
Response measured:  Whole cell [3H]prazosin binding
References:  102
Determination of the functional α1A-AR phenotype mediating contraction of human contractile tissue.
Species:  Human
Tissue:  Erectile tissue, vas deferens.
Response measured:  [3H]tamsulosin binding, inhibition of noradrenaline mediated contractions by subtype-selective antagonists.
References:  25-26
Selective insurmountable antagonism of α1A-AR by green mamba venom ρ-Da1a.
Species:  Human
Tissue:  CHO-K1 cells stably expressing human α1A-AR.
Response measured:  [3H]prazosin, [125I]HEAT binding, agonist stimulated Ca2+ mobilisation
References:  80
Determinants of agonist binding to the α1A-AR.
Species:  Rat
Tissue:  Transiently transfected COS-1 cells.
Response measured:  Radioligand binding, site directed mutagenesis.
References:  55,81
Role of α1A-AR in cardiac contractility.
Species:  Mouse
Tissue:  Heart muscle.
Response measured:  Contractile function, Ca2+ levels, Snapin, TRPC1, TRPC6 levels, cardiac specific over expression of α1A-AR (rat).
References:  87
Anti-apoptotic and protective effects of α1A-AR in cardiac ischaemia.
Species:  Mouse
Tissue:  Cardiac myocytes and HL-1 cells
Response measured:  [3H]deoxyglucose uptake, GLUT4 translocation
References:  120
Physiological Functions Click here for help
Contraction of stromal and capsular smooth muscle to control urethral resistance.
Species:  Human
Tissue:  Prostate.
References:  51
Contraction of urethral smooth muscle.
Species:  Human
Tissue:  Urethra.
References:  128
Contraction of skeletal muscle resistance arteries.
Species:  Human
Tissue:  Vasculature.
References:  60
Glucose uptake in heart.
Species:  Rat
Tissue:  Cardiomyocyte
References:  112
Orthostatic hypotensive effect of antipsychotic drugs is mediated by α1A-AR.
Species:  Rat
Tissue:  Mesenteric arteries.
References:  92
Activation of sarcolemmal Na+-H+ exchanger.
Species:  Rat
Tissue:  Ventricular myocytes.
References:  124
Silodosin (KM-3213: an α1A-AR selective antagonist) can improve the lower urinary tract symptoms associated with benign prostatic hyperplasia.
Species:  Human
Tissue:  Lower urinary tract.
References:  114
Decreased α1A-AR mRNA in renal tissue during aging.
Species:  Rat
Tissue:  Kidney.
References:  71
Contraction of right gastroepiploic artery.
Species:  Human
Tissue:  Artery.
References:  47
Contractile responses in human subcutaneous arteries.
Species:  Human
Tissue:  Subcutaneous arteries.
References:  59
Estrogen down-regulates α1A-AR expression in the urethral smooth muscle of female rats.
Species:  Rat
Tissue:  Intact urethra and isolated urethral smooth muscle cells.
References:  12
Stimulation of myocyte hypertrophy.
Species:  Rat
Tissue:  Ventricular cardiomyocytes.
References:  66
Inhibition of outward current via the acid-sensitive potassium channel TASK-1 by α1A-AR.
Species:  Rat
Tissue:  Heart.
References:  103
Contraction of anal sphincter.
Species:  Human
Tissue:  Anal sphincter
References:  95
Contraction of cauda epididymis.
Species:  Rat
Tissue:  Cauda epididymis
References:  96
The involvement of urothelial α1A-AR in controlling the micturition reflex.
Species:  Rat
Tissue:  Bladder.
References:  144
Interaction between H2S, NO and α1A-AR signalling in kidney of rats with left ventricular hypertrophy
Species:  Rat
Tissue:  Kidney
References:  2-3
Activation of bladder mechanosensory A delta fibres.
Species:  Rat
Tissue:  Bladder
References:  4
Role of α1A-AR in contraction of urethral smooth muscle in males and females.
Species:  Mouse
Tissue:  Urethra
References:  6
Phasic responses of portal vein.
Species:  Rat
Tissue:  Portal vein
References:  7
Effect of ageing and hypertension on desensitisation of vasoconstriction.
Species:  Rat
Tissue:  Aorta, tail and mesenteric arteries, responses and gene expression.
References:  10
Trafficking of aquaporin-5 in salivary glands.
Species:  Rat
Tissue:  Salivary glands
References:  14
Improved function and survival in heart failure.
Species:  Mouse
Tissue:  Ventricle
References:  21-22
Inotropic response in the failing heart.
Species:  Human
Tissue:  Ventricular trabeculae
References:  58
Role of α1A-AR in migration and gene expression in fibroblasts.
Species:  Human
Tissue:  Skin fibroblasts
References:  73
Anti-apoptotic and protective effects in heart.
Species:  Mouse
Tissue:  Cardiomyocyte
References:  120-121,139
Vascular tone.
Species:  Mouse
Tissue:  Femoral artery
References:  148
Regulation and development of ovarian function.
Species:  Rat
Tissue:  Ovary- granulosa cells
References:  145
Facilitates GABA release in the basolateral nucleus of the amygdala to mediate antiepileptic properties of norepinephrine.
Species:  Rat
Tissue:  Brain.
References:  11
Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and mediated by different α1-adrenoceptor subtypes.
Species:  Rat
Tissue:  Aorta.
References:  149
Activation of α1A-AR promotes differentiation of rat-1 fibroblasts to a smooth muscle-like phenotype.
Species:  Rat
Tissue:  Transfected rat-1 fibroblasts.
References:  109
α1A-AR inhibits PDGF receptor Tyr751 phosphorylation and PI3K activation.
Species:  Human
Tissue:  Transfected Rat-1 fibroblasts.
References:  75
Altered adrenoceptor signaling following traumatic brain injury contributes to working memory dysfunction.
Species:  Rat
Tissue:  Brain (prefrontal cortex).
References:  68
NOS inhibition by L-NNA abolishes cardioprotective effects of α1A-adrenoceptor.
Species:  Rat
Tissue:  Heart.
References:  153
Physiological Consequences of Altering Gene Expression Click here for help
Hypotension and a decreased pressor response to phenylephrine in α1A-AR knockout mice.
Species:  Mouse
Tissue:  In vivo.
Technique:  Transgenesis.
References:  107
α1A-AR regulates ERK survival pathway and decreases apoptosis in adult myocytes.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene knockouts.
References:  53
Mice with systemic constitively active mutation (CAM) have increased adult neurogenesis and gliogenesis.
Species:  Mouse
Tissue:  Brain, adult neural stem cells.
Technique:  Gene over-expression.
References:  44
Mice with systemic constitively active mutation (CAM) of the α1A-AR are preconditioned against ischemia through PKC mechanism.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression.
References:  108
Receptor over-expression inhibits Ins(1,4,5)P3 generation despite elevated PLC, measured as elevated p-MEK and p-ERK protein levels.
Species:  Mouse
Tissue:  Heart
Technique:  Gene over-expression.
References:  8
Cardioprotection in rats with α1A-adrenoceptor overexpression resembles that in non-transgenic littermates with preconditioning mediated by iNOS activation.
Species:  Rat
Tissue:  Heart.
Technique:  Gene over-expression.
References:  153
Cardiac specific overexpression of α1A-AR enhances cardiac contractility without hypertrophy.
Species:  Mouse
Tissue:  Heart.
Technique:  Transgenesis.
References:  74
Mice with systemic constitively active mutation (CAM) have increased synaptic plasticity, cognition and longevity.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene over-expression.
References:  28
Mice with systemic constitively active mutation (CAM) of the α1A-AR have reduced incidence of cancer.
Species:  Mouse
Tissue:  In vivo.
Technique:  Expression of CAM α1A-AR.
References:  19
Skin fibroblast migration, TGFβ1, IGF-1, HA and PIP production in response to α1A-AR stimulation, are inhibited by treatment of α1A-AR siRNA
Species:  Human
Tissue:  Skin fibroblasts.
Technique:  Gene knockdown with siRNA.
References:  73
Increased post MI hypertrophy, ventricular dilatation, fibrosis, apoptosis and mortality in α1A-AR knockout mice.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene knockout.
References:  145
Following coronary artery occlusion, rats with cardiomyocyte-specific α1A-AR over-expression display less fibrosis, hypertrophy and lung weight and show preserved LV ejection fraction compared to non-transgenic littermates
Species:  Rat
Tissue:  Heart.
Technique:  Cardiomyocyte specific α1A-AR over-expression.
References:  152
α1A-AR mediated inotrophy in failing RV myocardium requires the α1A-AR.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene knockout.
References:  20
α1A-AR activation is anti-apoptotic and protective related to enhanced glucose uptake into the heart.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression.
References:  120
α1A-AR activation promotes a favourable metabolic phenotype.
Species:  Mouse
Tissue:  Fat, skeletal muscle, heart, plasma.
Technique:  Gene knockout and expression of CAM mutant.
References:  121
Cardiac-specific over-expression of α1A-AR increases expression of relaxin receptor RXFP1.
Species:  Mouse
Tissue:  Heart.
Technique:  Cardiomyocyte specific over expression of α1A-AR.
References:  88
Down-regulation of α1A-AR attenuates ocular inflammation by inhibiting permeability of the blood brain barrier.
Species:  Mouse
Tissue:  Eye.
Technique:  Exposure to light, blood flow, flow cytometry, PCR, immunohistochemistry.
References:  125
Disruption of α1A/B-AR/CXCR4 heteromers inhibits α1A-AR function in vascular smooth muscle cells (human and rat).
Species:  Human
Tissue:  Vascular smooth muscle cells.
Technique:  siRNA gene silencing, proximity ligation assay, Ca2+ influx, contraction.
References:  131
α1A-AR counterbalance pathological pathways during post MI remodelling.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene knockout.
References:  145
Pleiotropic α1A-AR signalling inhibits RhoA/ROCK activity and contractility*.
Species:  Mouse
Tissue:  Heart.
Technique:  Cardiomyocyte specific over expression of α1A-AR. *α1A-AR agonist in cardiac restricted α1A-AR over expressing mice enhances contractility without hypertrophy
References:  147
Cardiac hypertrophy: mice with systemic constitively active mutation (CAM) of the α1A-AR secrete IL-6 and develop cardiac hypertrophy independently of changes in blood pressure. Co-activation of both α1A- and α1B-ARs inhibits development of hypertrophy.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression.
References:  98
Mice with α1A-AR over-expression develop a hypercontractile inotropic phenotype: hypercontraction and high fractional shortening.
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression.
References:  29
Increased p-MEK and p-ERK in rats with α1A-adrenoceptor overexpression.
Species:  Rat
Tissue:  Heart.
Technique:  Gene over-expression.
References:  153
Xenobiotics Influencing Gene Expression Click here for help
Peroxynitrite generated through septic shock (bacterial infection) can inhibit noradrenaline-induced contraction in rat endothelium-denuded aorta strips which contain α1A- and α1D-AR subtypes and represents a possible contributory mechanism underlying systemic hypotension in sepsis.
Species:  Rat
Tissue:  Endothelium-denuded aorta strips.
Technique:  Recording of tension changes in organ bath culture.
References:  127
Peroxynitrite generated through septic shock (bacterial infection) can inhibit maximum binding and signal transduction (intracellular calcium) of the α1A- and α1D-AR. This may be due to modification of these receptor subtypes by peroxynitrite and represents a possible mechanism contributing to systemic hypotension in sepsis.
Species:  Human
Tissue:  CHO cells transfected with the human α1A-, α1B- and α1D-ARs.
Technique:  Ligand binding and measurement of intracellular calcium.
References:  127
Olmesartan increases mRNA and protein expression of α1A-AR in lung.
Species:  Rat
Tissue:  Lung.
Technique:  RT-PCR, Western blotting
References:  72
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002972 abnormal cardiac muscle contractility PMID: 14519431 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0000304 abnormal cardiac stroke volume PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0001544 abnormal cardiovascular system physiology PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002332 abnormal exercise endurance PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005406 abnormal heart size PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004215 abnormal myocardial fiber physiology PMID: 14519431 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0006138 congestive heart failure PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003393 decreased cardiac output PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005333 decreased heart rate PMID: 12782680 
Adra1atm1Pcs Adra1atm1Pcs/Adra1atm1Pcs
involves: 129X1/SvJ * FVB/N
MGI:104773  MP:0003929 decreased heart rate variability PMID: 12093905 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002834 decreased heart weight PMID: 12782680 
Adra1atm1Pcs Adra1atm1Pcs/Adra1atm1Pcs
involves: 129X1/SvJ * FVB/N
MGI:104773  MP:0003026 decreased vasoconstriction PMID: 12093905 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003068 enlarged kidney PMID: 12782680 
Adra1atm1Pcs Adra1atm1Pcs/Adra1atm1Pcs
involves: 129X1/SvJ * FVB/N
MGI:104773  MP:0001596 hypotension PMID: 12093905 
Adra1a+|Adra1atm1Pcs Adra1atm1Pcs/Adra1a+
involves: 129X1/SvJ * FVB/N
MGI:104773  MP:0001596 hypotension PMID: 12093905 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005599 increased cardiac muscle contractility PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003823 increased left ventricular developed pressure PMID: 14519431 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004485 increased response of heart to induced stress PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002188 small heart PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
B6.129-Adra1b Adra1a
MGI:104773  MGI:104774  MP:0002188 small heart PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004565 small myocardial fiber PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
B6.129-Adra1b Adra1a
MGI:104773  MGI:104774  MP:0004565 small myocardial fiber PMID: 12782680 
Gene Expression and Pathophysiology Click here for help
Downregulation of α1A-AR but not α1B-AR
Tissue or cell type: 
Pathophysiology:  Dilated cardiomyopathy
Species:  Human
Technique: 
References:  118
Single nucleotide polymorphisms of ADRA1A (32 snps) do not contribute to interindividual or ethnic differences in response to phenylephrine.
Tissue or cell type:  Dorsal hand vein.
Pathophysiology:  Hypertension.
Species:  Human
Technique:  Dorsal hand vein responses to phenylephrine.
References:  1
α1A-AR-247R variant is associated with hyperproliferation and hypertrophy.
Tissue or cell type:  Coronary artery smooth muscle cells – C-017-5C or rat H9c2 cardiomyocytes transfected with human α1A-ARs.
Pathophysiology:  Hypertension.
Species:  Human
Technique:  Cell proliferation and hypertrophy, gene knockdown, RT-PCR
References:  41,64
Increased susceptibility to vasovagal syncope in patients expressing α1A-AR – Arg347Cys variant.
Tissue or cell type:  Genetic association study.
Pathophysiology:  Vasovagal syncope.
Species:  Human
Technique:  Association study, PCR
References:  49
Magnitude of acute cocaine-induced subjective effects is modulated by the α1A-AR–Arg347Cys variant.
Tissue or cell type:  Double blind laboratory trial.
Pathophysiology:  Drug dependence.
Species:  Human
Technique:  Association study.
References: 
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Arg492Cys polymorphism is not associated with hypertension in Caucasian and African-Americans, but with ethnicity.
Amino acids:  492
References:  142
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Arg347Cys polymorphism is associated with diastolic blood pressure response to short-term irbesartan (AT1 antagonist) treatment in Chinese hypertensive subjects.
References:  61
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The Arg347Cys polymorphism is associated with hypertension (diastolic blood pressure) in Brazilian population,
References:  36
Type:  Missense mutation
Species:  Human
Description:  The 347Arg and 2547G alleles are associated with hypertension in northern Han Chinese population.
Amino acid change:  R347C
Nucleotide change:  1475C>T
References:  43

References

Show »

1. Adefurin A, Ghimire LV, Kohli U, Muszkat M, Sofowora GG, Li C, Paranjape SY, Stein CM, Kurnik D. (2015) Genetic variation in the α1A-adrenergic receptor and phenylephrine-mediated venoconstriction. Pharmacogenomics J, 15 (4): 310-5. [PMID:25421140]

2. Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, Abdullah NA, Johns EJ. (2016) Cystathione gamma lyase/Hydrogen Sulphide Pathway Up Regulation Enhances the Responsiveness of α1A and α1B-Adrenoreceptors in the Kidney of Rats with Left Ventricular Hypertrophy. PLoS One, 11 (5): e0154995. [PMID:27191852]

3. Ahmad A, Sattar MA, Azam M, Khan SA, Bhatt O, Johns EJ. (2018) Interaction between nitric oxide and renal α1-adrenoreceptors mediated vasoconstriction in rats with left ventricular hypertrophyin Wistar Kyoto rats. PLoS One, 13 (2): e0189386. [PMID:29447158]

4. Aizawa N, Sugiyama R, Ichihara K, Fujimura T, Fukuhara H, Homma Y, Igawa Y. (2016) Functional roles of bladder α1-adrenoceptors in the activation of single-unit primary bladder afferent activity in rats. BJU Int, 117 (6): 993-1001. [PMID:26332379]

5. Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. (2017) α1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc, 6 (8). [PMID:28862946]

6. Alexandre EC, de Oliveira MG, Campos R, Kiguti LR, Calmasini FB, Silva FH, Grant AD, Yoshimura N, Antunes E. (2017) How important is the α1-adrenoceptor in primate and rodent proximal urethra? Sex differences in the contribution of α1-adrenoceptor to urethral contractility. Am J Physiol Renal Physiol, 312 (6): F1026-F1034. [PMID:28298357]

7. Alsufyani HA, Docherty JR. (2021) Involvement of G proteins and Rho kinase in α1-adrenoceptor mediated contractions of the rat portal vein. Can J Physiol Pharmacol, 99 (6): 654-659. [PMID:33096009]

8. Amirahmadi F, Turnbull L, Du XJ, Graham RM, Woodcock EA. (2008) Heightened alpha1A-adrenergic receptor activity suppresses ischaemia/reperfusion-induced Ins(1,4,5)P3 generation in the mouse heart: a comparison with ischaemic preconditioning. Clin Sci, 114 (2): 157-64. [PMID:17696883]

9. Amirak E, Fuller SJ, Sugden PH, Clerk A. (2013) p90 ribosomal S6 kinases play a significant role in early gene regulation in the cardiomyocyte response to G(q)-protein-coupled receptor stimuli, endothelin-1 and α(1)-adrenergic receptor agonists. Biochem J, 450 (2): 351-63. [PMID:23215897]

10. Arce C, Vicente D, Segura V, Flacco N, Montó F, Almenar L, Agüero J, Rueda J, Jiménez-Altayó F, Vila E et al.. (2017) Activation of α1A -adrenoceptors desensitizes the rat aorta response to phenylephrine through a neuronal NOS pathway, a mechanism lost with ageing. Br J Pharmacol, 174 (13): 2015-2030. [PMID:28369791]

11. Aroniadou-Anderjaska V, Qashu F, Braga MF. (2007) Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: implications for epilepsy and anxiety disorders. Amino Acids, 32 (3): 305-15. [PMID:17048126]

12. Banie L, Lin G, Ning H, Wang G, Lue TF, Lin CS. (2008) Effects of estrogen, raloxifene and levormeloxifene on alpha1A-adrenergic receptor expression. J Urol, 180 (5): 2241-6. [PMID:18804812]

13. Blue DR, Daniels DV, Gever JR, Jett MF, O'Yang C, Tang HM, Williams TJ, Ford AP. (2004) Pharmacological characteristics of Ro 115-1240, a selective alpha1A/1L-adrenoceptor partial agonist: a potential therapy for stress urinary incontinence. BJU Int, 93 (1): 162-70. [PMID:14678390]

14. Bragiel AM, Wang D, Pieczonka TD, Shono M, Ishikawa Y. (2016) Mechanisms Underlying Activation of α₁-Adrenergic Receptor-Induced Trafficking of AQP5 in Rat Parotid Acinar Cells under Isotonic or Hypotonic Conditions. Int J Mol Sci, 17 (7). [PMID:27367668]

15. Campbell AP, Wakelin LP, Denny WA, Finch AM. (2017) Homobivalent Conjugation Increases the Allosteric Effect of 9-aminoacridine at the α1-Adrenergic Receptors. Mol Pharmacol, 91 (2): 135-144. [PMID:27903755]

16. Carroll WA, Sippy KB, Esbenshade TA, Buckner SA, Hancock AA, Meyer MD. (2001) Two novel and potent 3-[(o-methoxyphenyl)piperazinylethyl]-5-phenylthien. Bioorg Med Chem Lett, 11 (9): 1119-21. [PMID:11354357]

17. Chang DJ, Chang TK, Yamanishi SS, Salazar FH, Kosaka AH, Khare R, Bhakta S, Jasper JR, Shieh IS, Lesnick JD et al.. (1998) Molecular cloning, genomic characterization and expression of novel human alpha1A-adrenoceptor isoforms. FEBS Lett, 422 (2): 279-83. [PMID:9490024]

18. Coccurello R, Bielawski A, Zelek-Molik A, Vetulani J, Kowalska M, D'Amato FR, Nalepa I. (2014) Brief maternal separation affects brain α1-adrenoceptors and apoptotic signaling in adult mice. Prog Neuropsychopharmacol Biol Psychiatry, 48: 161-9. [PMID:24128685]

19. Collette KM, Zhou XD, Amoth HM, Lyons MJ, Papay RS, Sens DA, Perez DM, Doze VA. (2014) Long-term α1B-adrenergic receptor activation shortens lifespan, while α1A-adrenergic receptor stimulation prolongs lifespan in association with decreased cancer incidence. Age (Dordr), 36 (4): 9675. [PMID:24994537]

20. Cowley PM, Wang G, Chang AN, Makwana O, Swigart PM, Lovett DH, Stull JT, Simpson PC, Baker AJ. (2015) The α1A-adrenergic receptor subtype mediates increased contraction of failing right ventricular myocardium. Am J Physiol Heart Circ Physiol, 309 (5): H888-96. [PMID:26116709]

21. Cowley PM, Wang G, Joshi S, Swigart PM, Lovett DH, Simpson PC, Baker AJ. (2017) α1A-Subtype adrenergic agonist therapy for the failing right ventricle. Am J Physiol Heart Circ Physiol, 313 (6): H1109-H1118. [PMID:28822963]

22. Cowley PM, Wang G, Swigart PM, Raghunathan A, Reddy N, Dulam P, Lovett DH, Simpson PC, Baker AJ. (2019) Reversal of right ventricular failure by chronic α1A-subtype adrenergic agonist therapy. Am J Physiol Heart Circ Physiol, 316 (1): H224-H232. [PMID:30412439]

23. da Silva Junior ED, Sato M, Merlin J, Broxton N, Hutchinson DS, Ventura S, Evans BA, Summers RJ. (2017) Factors influencing biased agonism in recombinant cells expressing the human α1A -adrenoceptor. Br J Pharmacol, 174 (14): 2318-2333. [PMID:28444738]

24. Daniels DV, Gever JR, Jasper JR, Kava MS, Lesnick JD, Meloy TD, Stepan G, Williams TJ, Clarke DE, Chang DJ et al.. (1999) Human cloned alpha1A-adrenoceptor isoforms display alpha1L-adrenoceptor pharmacology in functional studies. Eur J Pharmacol, 370 (3): 337-43. [PMID:10334511]

25. Davis BJ, Chapple CR, Sellers DJ, Naylor AL, Sillar D, Campbell A, Chess-Williams R. (2018) α1L-adrenoceptors mediate contraction of human erectile tissue. J Pharmacol Sci, 137 (4): 366-371. [PMID:30139713]

26. Davis BJ, Wiener M, Chapple CR, Sellers DJ, Chess-Williams R. (2015) Functional and radioligand binding characterization of the α1L-adrenoceptor subtype of the human vas deferens. Auton Autacoid Pharmacol, 34 (3-4): 41-9. [PMID:25790239]

27. Day HE, Campeau S, Watson Jr SJ, Akil H. (1997) Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat, 13 (2): 115-39. [PMID:9285356]

28. Doze VA, Papay RS, Goldenstein BL, Gupta MK, Collette KM, Nelson BW, Lyons MJ, Davis BA, Luger EJ, Wood SG et al.. (2011) Long-term α1A-adrenergic receptor stimulation improves synaptic plasticity, cognitive function, mood, and longevity. Mol Pharmacol, 80 (4): 747-58. [PMID:21791575]

29. Du XJ, Fang L, Gao XM, Kiriazis H, Feng X, Hotchkin E, Finch AM, Chaulet H, Graham RM. (2004) Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. J Mol Cell Cardiol, 37 (5): 979-87. [PMID:15522275]

30. Du XJ, Gao XM, Kiriazis H, Moore XL, Ming Z, Su Y, Finch AM, Hannan RA, Dart AM, Graham RM. (2006) Transgenic alpha1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovasc Res, 71 (4): 735-43. [PMID:16859660]

31. Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY et al.. (2016) New Insights into Mechanisms and Functions of Chemokine (C-X-C Motif) Receptor 4 Heteromerization in Vascular Smooth Muscle. Int J Mol Sci, 17 (5). [PMID:27331810]

32. Evans BA, Broxton N, Merlin J, Sato M, Hutchinson DS, Christopoulos A, Summers RJ. (2011) Quantification of functional selectivity at the human α(1A)-adrenoceptor. Mol Pharmacol, 79 (2): 298-307. [PMID:20978120]

33. Faure C, Pimoule C, Vallancien G, Langer SZ, Graham D. (1994) Identification of alpha 1-adrenoceptor subtypes present in the human prostate. Life Sci, 54 (21): 1595-605. [PMID:8196478]

34. Ford AP, Arredondo NF, Blue Jr DR, Bonhaus DW, Jasper J, Kava MS, Lesnick J, Pfister JR, Shieh IA, Vimont RL et al.. (1996) RS-17053 (N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-alpha, alpha-dimethyl-1H-indole-3-ethanamine hydrochloride), a selective alpha 1A-adrenoceptor antagonist, displays low affinity for functional alpha 1-adrenoceptors in human prostate: implications for adrenoceptor classification. Mol Pharmacol, 49 (2): 209-15. [PMID:8632751]

35. Ford AP, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE. (1997) Pharmacological pleiotropism of the human recombinant alpha1A-adrenoceptor: implications for alpha1-adrenoceptor classification. Br J Pharmacol, 121 (6): 1127-35. [PMID:9249248]

36. Freitas SR, Pereira AC, Floriano MS, Mill JG, Krieger JE. (2008) Association of alpha1a-adrenergic receptor polymorphism and blood pressure phenotypes in the Brazilian population. BMC Cardiovasc Disord, 8: 40. [PMID:19105822]

37. Gable BD, Shiga T, Murray PA, Damron DS. (2005) Propofol increases contractility during alpha1a-adrenoreceptor activation in adult rat cardiomyocytes. Anesthesiology, 103 (2): 335-43. [PMID:16052116]

38. Gao X, Enten GA, DeSantis AJ, Volkman BF, Gaponenko V, Majetschak M. (2020) Characterization of heteromeric complexes between chemokine (C-X-C motif) receptor 4 and α1-adrenergic receptors utilizing intermolecular bioluminescence resonance energy transfer assays. Biochem Biophys Res Commun, 528 (2): 368-375. [PMID:32085899]

39. Giardinà D, Crucianelli M, Romanelli R, Leonardi A, Poggesi E, Melchiorre C. (1996) Synthesis and biological profile of the enantiomers of [4-(4-amino-6,7-dimethoxyquinazolin-2-yl)-cis-octahydroquinoxalin- 1-yl]furan-2-ylmethanone (cyclazosin), a potent competitive alpha 1B- adrenoceptor antagonist. J Med Chem, 39 (23): 4602-7. [PMID:8917649]

40. Gonzalez-Cabrera PJ, Shi T, Yun J, McCune DF, Rorabaugh BR, Perez DM. (2004) Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes. Endocrinology, 145 (11): 5157-67. [PMID:15297446]

41. Gradinaru I, Babaeva E, Schwinn DA, Oganesian A. (2015) Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway. PLoS One, 10 (11): e0142787. [PMID:26571308]

42. Gray K, Short J, Ventura S. (2008) The alpha1A-adrenoceptor gene is required for the alpha1L-adrenoceptor-mediated response in isolated preparations of the mouse prostate. Br J Pharmacol, 155 (1): 103-9. [PMID:18552869]

43. Gu D, Ge D, Snieder H, He J, Chen S, Huang J, Li B, Chen R, Qiang B. (2006) Association of alpha1A adrenergic receptor gene variants on chromosome 8p21 with human stage 2 hypertension. J Hypertens, 24 (6): 1049-56. [PMID:16685204]

44. Gupta MK, Papay RS, Jurgens CW, Gaivin RJ, Shi T, Doze VA, Perez DM. (2009) alpha1-Adrenergic receptors regulate neurogenesis and gliogenesis. Mol Pharmacol, 76 (2): 314-26. [PMID:19487244]

45. Hague C, Bernstein LS, Ramineni S, Chen Z, Minneman KP, Hepler JR. (2005) Selective inhibition of alpha1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. J Biol Chem, 280 (29): 27289-95. [PMID:15917235]

46. Hague C, Chen Z, Uberti M, Minneman KP. (2003) Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners?. Life Sci, 74 (4): 411-8. [PMID:14609720]

47. Han JL, Zhang YY, Lü ZZ, Mao JM, Chen MZ, Han QD. (2003) Functional alpha1-adrenergic receptor subtypes in human right gastroepiploic artery. Acta Pharmacol Sin, 24 (4): 327-31. [PMID:12676072]

48. Hancock AA, Buckner SA, Brune ME, Katwala S, Milicic I, Ireland LM, Morse PA, Knepper SM, Meyer MD,Chapple CR et al.. (1998) Pharmacological characterization of A-131701, a novel R 1 -adrenoceptor antagonist selective for R 1A - and R 1D - compared to R 1B -adrenoceptors. Drug Development Research, 44: 140-162.

49. Hernández-Pacheco G, González-Hermosillo A, Murata C, Yescas P, Espínola-Zavaleta N, Martínez M, Serrano H. (2014) Arg347Cys polymorphism of α1a-adrenergic receptor in vasovagal syncope. Case-control study in a Mexican population. Auton Neurosci, 183: 66-71. [PMID:24548768]

50. Hieble JP. (2000) Adrenoceptor subclassification: an approach to improved cardiovascular therapeutics. Pharm Acta Helv, 74 (2-3): 163-71. [PMID:10812954]

51. Hieble JP, Ruffolo Jr RR. (1997) Recent advances in the identification of alpha1- and alpha2-adrenoceptor subtypes: therapeutic implications. Expert Opin Investig Drugs, 6 (4): 367-87. [PMID:15989605]

52. Horie K, Obika K, Foglar R, Tsujimoto G. (1995) Selectivity of the imidazoline alpha-adrenoceptor agonists (oxymetazoline and cirazoline) for human cloned alpha 1-adrenoceptor subtypes. Br J Pharmacol, 116 (1): 1611-8. [PMID:8564227]

53. Huang Y, Wright CD, Merkwan CL, Baye NL, Liang Q, Simpson PC, O'Connell TD. (2007) An alpha1A-adrenergic-extracellular signal-regulated kinase survival signaling pathway in cardiac myocytes. Circulation, 115 (6): 763-72. [PMID:17283256]

54. Hussain MB, Marshall I. (1997) Characterization of alpha1-adrenoceptor subtypes mediating contractions to phenylephrine in rat thoracic aorta, mesenteric artery and pulmonary artery. Br J Pharmacol, 122 (5): 849-58. [PMID:9384500]

55. Hwa J, Graham RM, Perez DM. (1995) Identification of critical determinants of alpha 1-adrenergic receptor subtype selective agonist binding. J Biol Chem, 270 (39): 23189-95. [PMID:7559466]

56. Hwa J, Graham RM, Perez DM. (1996) Chimeras of alpha1-adrenergic receptor subtypes identify critical residues that modulate active state isomerization. J Biol Chem, 271 (14): 7956-64. [PMID:8626475]

57. Hwa J, Perez DM. (1996) The unique nature of the serine interactions for alpha 1-adrenergic receptor agonist binding and activation. J Biol Chem, 271 (11): 6322-7. [PMID:8626427]

58. Janssen PML, Canan BD, Kilic A, Whitson BA, Baker AJ. (2018) Human Myocardium Has a Robust α1A-Subtype Adrenergic Receptor Inotropic Response. J Cardiovasc Pharmacol, 72 (3): 136-142. [PMID:29923888]

59. Jarajapu YP, Johnston F, Berry C, Renwick A, McGrath JC, MacDonald A, Hillier C. (2001) Functional characterization of alpha1-adrenoceptor subtypes in human subcutaneous resistance arteries. J Pharmacol Exp Ther, 299 (2): 729-34. [PMID:11602687]

60. Jarajapu YP, McGrath JC, Hillier C, MacDonald A. (2003) The alpha 1-adrenoceptor profile in human skeletal muscle resistance arteries in critical limb ischaemia. Cardiovasc Res, 57 (2): 554-62. [PMID:12566128]

61. Jiang S, Mao G, Zhang S, Hong X, Tang G, Li Z, Liu X, Zhang Y, Wang B, Xu X et al.. (2005) Individual and joint association of alpha1A-adrenergic receptor Arg347Cys polymorphism and plasma irbesartan concentration with blood pressure therapeutic response in Chinese hypertensive subjects. Clin Pharmacol Ther, 78 (3): 239-48. [PMID:16153395]

62. Kamikihara SY, Mueller A, Lima V, Silva AR, da Costa IB, Buratini Jr J, Pupo AS. (2005) Differential distribution of functional alph}1-adrenergic receptor subtypes along the rat tail artery. J Pharmacol Exp Ther, 314 (2): 753-61. [PMID:15872040]

63. Kawanabe Y, Hashimoto N, Masaki T. (2004) Characterization of G proteins involved in activation of nonselective cation channels and arachidonic acid release by norepinephrine/alpha1A-adrenergic receptors. Am J Physiol, Cell Physiol, 286 (3): C596-600. [PMID:14761886]

64. Kleine-Brueggeney M, Gradinaru I, Babaeva E, Schwinn DA, Oganesian A. (2014) Alpha1a-adrenoceptor genetic variant induces cardiomyoblast-to-fibroblast-like cell transition via distinct signaling pathways. Cell Signal, 26 (9): 1985-97. [PMID:24835978]

65. Knepper SM, Buckner SA, Brune ME, DeBernardis JF, Meyer MD, Hancock AA. (1995) A-61603, a potent alpha 1-adrenergic receptor agonist, selective for the alpha 1A receptor subtype. J Pharmacol Exp Ther, 274 (1): 97-103. [PMID:7616455]

66. Knowlton KU, Michel MC, Itani M, Shubeita HE, Ishihara K, Brown JH, Chien KR. (1993) The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem, 268 (21): 15374-80. [PMID:8393439]

67. Kobayashi S, Tomiyama Y, Hoyano Y, Yamazaki Y, Kusama H, Itoh Y, Kubota Y, Kohri K. (2009) Gene expressions and mechanical functions of α1-adrenoceptor subtypes in mouse ureter. World J Urol, 27 (6): 775-80. [PMID:19259685]

68. Kobori N, Hu B, Dash PK. (2011) Altered adrenergic receptor signaling following traumatic brain injury contributes to working memory dysfunction. Neuroscience, 172: 293-302. [PMID:20974230]

69. Lee D, Robeva A, Chen Z, Minneman KP. (2003) Mutational uncoupling of alpha1A-adrenergic receptors from G proteins also uncouples mitogenic and transcriptional responses in PC12 cells. J Pharmacol Exp Ther, 306 (2): 471-7. [PMID:12724349]

70. Leonardi A, Hieble JP, Guarneri L, Naselsky DP, Poggesi E, Sironi G, Sulpizio AC, Testa R. (1997) Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): role of the alpha-1L adrenoceptor in tissue selectivity, part I. J Pharmacol Exp Ther, 281 (3): 1272-83. [PMID:9190863]

71. Li YF, Cao XJ, Bai XY, Lin SP, Shi ST. (2010) Change of expression of renal alpha1-adrenergic receptor and angiotensin II receptor subtypes with aging in rats. Aging Clin Exp Res, 22 (2): 123-8. [PMID:20440098]

72. Li YF, Jiang ZL, Cao FF, Liu F. (2015) Effects of olmesartan therapy on the expression of lung adrenoceptors in rats with chronic heart failure. J Renin Angiotensin Aldosterone Syst, 16 (1): 6-12. [PMID:25487981]

73. Liao MH, Liu SS, Peng IC, Tsai FJ, Huang HH. (2014) The stimulatory effects of alpha1-adrenergic receptors on TGF-beta1, IGF-1 and hyaluronan production in human skin fibroblasts. Cell Tissue Res, 357 (3): 681-93. [PMID:24844469]

74. Lin F, Owens WA, Chen S, Stevens ME, Kesteven S, Arthur JF, Woodcock EA, Feneley MP, Graham RM. (2001) Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res, 89 (4): 343-50. [PMID:11509451]

75. Lin HY, Ballou LM, Lin RZ. (2003) Stimulation of the alpha1A adrenergic receptor inhibits PDGF-induced PDGF beta receptor Tyr751 phosphorylation and PI 3-kinase activation. FEBS Lett, 540 (1-3): 106-10. [PMID:12681492]

76. Liu CM, Lo YC, Wu BN, Wu WJ, Chou YH, Huang CH, An LM, Chen IJ. (2007) cGMP-enhancing- and alpha1A/alpha1D-adrenoceptor blockade-derived inhibition of Rho-kinase by KMUP-1 provides optimal prostate relaxation and epithelial cell anti-proliferation efficacy. Prostate, 67 (13): 1397-410. [PMID:17639498]

77. Liu F, He K, Yang X, Xu N, Liang Z, Xu M, Zhao X, Han Q, Zhang Y. (2011) α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway. PLoS ONE, 6 (6): e21520. [PMID:21738688]

78. Mackenzie JF, Daly CJ, Pediani JD, McGrath JC. (2000) Quantitative imaging in live human cells reveals intracellular alpha(1)-adrenoceptor ligand-binding sites. J Pharmacol Exp Ther, 294 (2): 434-43. [PMID:10900216]

79. Martí D, Miquel R, Ziani K, Gisbert R, Ivorra MD, Anselmi E, Moreno L, Villagrasa V, Barettino D, D'Ocon P. (2005) Correlation between mRNA levels and functional role of alpha1-adrenoceptor subtypes in arteries: evidence of alpha1L as a functional isoform of the alpha1A-adrenoceptor. Am J Physiol Heart Circ Physiol, 289 (5): H1923-32. [PMID:15951348]

80. Maïga A, Merlin J, Marcon E, Rouget C, Larregola M, Gilquin B, Fruchart-Gaillard C, Lajeunesse E, Marchetti C, Lorphelin A et al.. (2013) Orthosteric binding of ρ-Da1a, a natural peptide of snake venom interacting selectively with the α1A-adrenoceptor. PLoS ONE, 8 (7): e68841. [PMID:23935897]

81. McCune D, Gaivin R, Rorabaugh B, Perez D. (2004) Bulk is a determinant of oxymetazoline affinity for the alpha1A-adrenergic receptor. Recept Channels, 10 (3-4): 109-16. [PMID:15512845]

82. Mendes FR, Hamamura M, Queiróz DB, Porto CS, Avellar MC. (2004) Effects of androgen manipulation on alpha1-adrenoceptor subtypes in the rat seminal vesicle. Life Sci, 75 (12): 1449-63. [PMID:15240180]

83. Methven L, McBride M, Wallace GA, McGrath JC. (2009) The alpha 1B/D-adrenoceptor knockout mouse permits isolation of the vascular alpha 1A-adrenoceptor and elucidates its relationship to the other subtypes. Br J Pharmacol, 158 (1): 209-24. [PMID:19572943]

84. Meyer MD, Altenbach RJ, Basha FZ, Carroll WA, Drizin I, Elmore SW, Ehrlich PP, Lebold SA, Tietje K, Sippy KB et al.. (1997) Synthesis and pharmacological characterization of 3-[2-((3aR,9bR)-cis-6-methoxy-2,3,3a,4,5,9b-hexahydro-1H-benz[e] isoindol-2-yl)ethyl]pyrido-[3',4':4,5]thieno[3,2-d]pyrimidine-2,4 (1H,3H)-dione (A-131701): a uroselective alpha 1A adrenoceptor antagonist for the symptomatic treatment of benign prostatic hyperplasia. J Med Chem, 40 (20): 3141-3. [PMID:9379432]

85. Michelotti GA, Price DT, Schwinn DA. (2000) Alpha 1-adrenergic receptor regulation: basic science and clinical implications. Pharmacol Ther, 88 (3): 281-309. [PMID:11337028]

86. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther, 303 (2): 791-804. [PMID:12388666]

87. Mohl MC, Iismaa SE, Xiao XH, Friedrich O, Wagner S, Nikolova-Krstevski V, Wu J, Yu ZY, Feneley M, Fatkin D et al.. (2011) Regulation of murine cardiac contractility by activation of α(1A)-adrenergic receptor-operated Ca(2+) entry. Cardiovasc Res, 91 (2): 310-9. [PMID:21546445]

88. Moore XL, Su Y, Fan Y, Zhang YY, Woodcock EA, Dart AM, Du XJ. (2014) Diverse regulation of cardiac expression of relaxin receptor by α1- and β1-adrenoceptors. Cardiovasc Drugs Ther, 28 (3): 221-8. [PMID:24852484]

89. Morris DP, Lei B, Wu YX, Michelotti GA, Schwinn DA. (2008) The alpha1a-adrenergic receptor occupies membrane rafts with its G protein effectors but internalizes via clathrin-coated pits. J Biol Chem, 283 (5): 2973-85. [PMID:18048357]

90. Morris DP, Price RR, Smith MP, Lei B, Schwinn DA. (2004) Cellular trafficking of human alpha1a-adrenergic receptors is continuous and primarily agonist-independent. Mol Pharmacol, 66 (4): 843-54. [PMID:15258254]

91. Mustafa S, See HB, Seeber RM, Armstrong SP, White CW, Ventura S, Ayoub MA, Pfleger KD. (2012) Identification and profiling of novel α1A-adrenoceptor-CXC chemokine receptor 2 heteromer. J Biol Chem, 287 (16): 12952-65. [PMID:22371491]

92. Nourian Z, Mow T, Muftic D, Burek S, Pedersen ML, Matz J, Mulvany MJ. (2008) Orthostatic hypotensive effect of antipsychotic drugs in Wistar rats by in vivo and in vitro studies of alpha1-adrenoceptor function. Psychopharmacology (Berl.), 199 (1): 15-27. [PMID:18542932]

93. Obika K, Shibata K, Horie K, Foglar R, Kimura K, Tsujimoto G. (1995) NS-49, a novel alpha 1a-adrenoceptor-selective agonist characterization using recombinant human alpha 1-adrenoceptors. Eur J Pharmacol, 291 (3): 327-34. [PMID:8719417]

94. Ohmura T, Oshita M, Kigoshi S, Muramatsu I. (1992) Identification of alpha 1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol, 107 (3): 697-704. [PMID:1361871]

95. Owaki H, Sadahiro S, Takaki M. (2015) Characterizations of the α1-adrenoceptor subtypes mediating contractions of the human internal anal sphincter. J Pharmacol Sci, 127 (4): 424-9. [PMID:25913761]

96. Pacini ESA, Castilho ACS, Hebeler-Barbosa F, Pupo AS, Kiguti LRA. (2018) Contraction of Rat Cauda Epididymis Smooth Muscle to α1-Adrenoceptor Activation Is Mediated by α1A-Adrenoceptors. J Pharmacol Exp Ther, 366 (1): 21-28. [PMID:29685886]

97. Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA, Perez DM. (2006) Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol, 497 (2): 209-22. [PMID:16705673]

98. Papay RS, Shi T, Piascik MT, Naga Prasad SV, Perez DM. (2013) α₁A-adrenergic receptors regulate cardiac hypertrophy in vivo through interleukin-6 secretion. Mol Pharmacol, 83 (5): 939-48. [PMID:23404509]

99. Parmentier JH, Gandhi GK, Wiggins MT, Saeed AE, Bourgoin SG, Malik KU. (2004) Protein kinase Czeta regulates phospholipase D activity in rat-1 fibroblasts expressing the alpha1A adrenergic receptor. BMC Cell Biol, 5: 4. [PMID:14736339]

100. Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. (1994) Localization of mRNA for three distinct alpha 1-adrenergic receptor subtypes in human tissues: implications for human alpha-adrenergic physiology. Mol Pharmacol, 45 (2): 171-5. [PMID:8114668]

101. Proudman RGW, Baker JG. (2021) The selectivity of α-adrenoceptor agonists for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 9 (4): e00799. [PMID:34355529]

102. Proudman RGW, Pupo AS, Baker JG. (2020) The affinity and selectivity of α-adrenoceptor antagonists, antidepressants, and antipsychotics for the human α1A, α1B, and α1D-adrenoceptors. Pharmacol Res Perspect, 8 (4): e00602. [PMID:32608144]

103. Putzke C, Wemhöner K, Sachse FB, Rinné S, Schlichthörl G, Li XT, Jaé L, Eckhardt I, Wischmeyer E, Wulf H et al.. (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res, 75 (1): 59-68. [PMID:17389142]

104. Quaresma BMCS, Pimenta AR, Santos da Silva AC, Pupo AS, Romeiro LAS, Silva CLM, Noël F. (2019) Revisiting the Pharmacodynamic Uroselectivity of α 1-Adrenergic Receptor Antagonists. J Pharmacol Exp Ther, 371 (1): 106-112. [PMID:31285236]

105. Queiróz DB, Mendes FR, Porto CS, Avellar MC. (2002) Alpha1-adrenoceptor subtypes in rat epididymis and the effects of sexual maturation. Biol Reprod, 66 (2): 508-15. [PMID:11804969]

106. Quinton L, Girard E, Maiga A, Rekik M, Lluel P, Masuyer G, Larregola M, Marquer C, Ciolek J, Magnin T et al.. (2010) Isolation and pharmacological characterization of AdTx1, a natural peptide displaying specific insurmountable antagonism of the alpha1A-adrenoceptor. Br J Pharmacol, 159 (2): 316-25. [PMID:20015090]

107. Rokosh DG, Simpson PC. (2002) Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA, 99 (14): 9474-9. [PMID:12093905]

108. Rorabaugh BR, Ross SA, Gaivin RJ, Papay RS, McCune DF, Simpson PC, Perez DM. (2005) alpha1A- but not alpha1B-adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovasc Res, 65 (2): 436-45. [PMID:15639483]

109. Saeed AE, Parmentier JH, Malik KU. (2004) Activation of alpha1A-adrenergic receptor promotes differentiation of rat-1 fibroblasts to a smooth muscle-like phenotype. BMC Cell Biol, 5 (1): 47. [PMID:15603588]

110. Salomonsson M, Oker M, Kim S, Zhang H, Faber JE, Arendshorst WJ. (2001) Alpha1-adrenoceptor subtypes on rat afferent arterioles assessed by radioligand binding and RT-PCR. Am J Physiol Renal Physiol, 281 (1): F172-8. [PMID:11399658]

111. Santana N, Mengod G, Artigas F. (2013) Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors. Int J Neuropsychopharmacol, 16 (5): 1139-51. [PMID:23195622]

112. Sato M, Evans BA, Sandström AL, Chia LY, Mukaida S, Thai BS, Nguyen A, Lim L, Tan CYR, Baltos JA et al.. (2018) α1A-Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes. Biochem Pharmacol, 148: 27-40. [PMID:29175420]

113. Saussy Jr DL, Goetz AS, Queen KL, King HK, Lutz MW, Rimele TJ. (1996) Structure activity relationships of a series of buspirone analogs at alpha-1 adrenoceptors: further evidence that rat aorta alpha-1 adrenoceptors are of the alpha-1D-subtype. J Pharmacol Exp Ther, 278 (1): 136-44. [PMID:8764344]

114. Schilit S, Benzeroual KE. (2009) Silodosin: a selective alpha1A-adrenergic receptor antagonist for the treatment of benign prostatic hyperplasia. Clin Ther, 31 (11): 2489-502. [PMID:20109995]

115. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al.. (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J Pharmacol Exp Ther, 272 (1): 134-42. [PMID:7815325]

116. Sharpe IA, Thomas L, Loughnan M, Motin L, Palant E, Croker DE, Alewood D, Chen S, Graham RM, Alewood PF et al.. (2003) Allosteric alpha 1-adrenoreceptor antagonism by the conopeptide rho-TIA. J Biol Chem, 278 (36): 34451-7. [PMID:12824165]

117. Shi T, Duan ZH, Papay R, Pluskota E, Gaivin RJ, de la Motte CA, Plow EF, Perez DM. (2006) Novel alpha1-adrenergic receptor signaling pathways: secreted factors and interactions with the extracellular matrix. Mol Pharmacol, 70 (1): 129-42. [PMID:16617165]

118. Shi T, Moravec CS, Perez DM. (2013) Novel proteins associated with human dilated cardiomyopathy: selective reduction in α1A-adrenergic receptors and increased desensitization proteins. J Recept Signal Transduct Res, 33 (2): 96-106. [PMID:23384050]

119. Shi T, Papay RS, Perez DM. (2012) α(1A)-adrenergic receptor differentially regulates STAT3 phosphorylation through PKCϵ and PKCδ in myocytes. J Recept Signal Transduct Res, 32 (2): 76-86. [PMID:22268811]

120. Shi T, Papay RS, Perez DM. (2016) α1A-Adrenergic receptor prevents cardiac ischemic damage through PKCδ/GLUT1/4-mediated glucose uptake. J Recept Signal Transduct Res, 36 (3): 261-70. [PMID:26832303]

121. Shi T, Papay RS, Perez DM. (2017) The role of α1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation. J Recept Signal Transduct Res, 37 (2): 124-132. [PMID:27277698]

122. Shibata K, Foglar R, Horie K, Obika K, Sakamoto A, Ogawa S, Tsujimoto G. (1995) KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. Mol Pharmacol, 48 (2): 250-8. [PMID:7651358]

123. Sigala S, Dellabella M, Milanese G, Fornari S, Faccoli S, Palazzolo F, Peroni A, Mirabella G, Cunico SC, Spano P et al.. (2005) Evidence for the presence of alpha1 adrenoceptor subtypes in the human ureter. Neurourol Urodyn, 24 (2): 142-8. [PMID:15690361]

124. Snabaitis AK, Yokoyama H, Avkiran M. (2000) Roles of mitogen-activated protein kinases and protein kinase C in alpha(1A)-adrenoceptor-mediated stimulation of the sarcolemmal Na(+)-H(+) exchanger. Circ Res, 86 (2): 214-20. [PMID:10666418]

125. Stofkova A, Kamimura D, Ohki T, Ota M, Arima Y, Murakami M. (2019) Photopic light-mediated down-regulation of local α1A-adrenergic signaling protects blood-retina barrier in experimental autoimmune uveoretinitis. Sci Rep, 9 (1): 2353. [PMID:30787395]

126. Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. (2005) Alpha1-adrenoreceptor in human hippocampus: binding and receptor subtype mRNA expression. Brain Res Mol Brain Res, 139 (2): 367-71. [PMID:16039007]

127. Takakura K, Taniguchi T, Muramatsu I, Takeuchi K, Fukuda S. (2002) Modification of alpha1 -adrenoceptors by peroxynitrite as a possible mechanism of systemic hypotension in sepsis. Crit Care Med, 30 (4): 894-9. [PMID:11940765]

128. Taniguchi N, Hamada K, Ogasawara T, Ukai Y, Yoshikuni Y, Kimura K. (1996) NS-49, an alpha 1A-adrenoceptor agonist, selectively increases intraurethral pressure in dogs. Eur J Pharmacol, 318 (1): 117-22. [PMID:9007522]

129. Taniguchi T, Inagaki R, Murata S, Akiba I, Muramatsu I. (1999) Microphysiometric analysis of human alpha1a-adrenoceptor expressed in Chinese hamster ovary cells. Br J Pharmacol, 127 (4): 962-8. [PMID:10433504]

130. Tayebati SK, Bronzetti E, Morra Di Cella S, Mulatero P, Ricci A, Rossodivita I, Schena M, Schiavone D, Veglio F, Amenta F. (2000) In situ hybridization and immunocytochemistry of alpha1-adrenoceptors in human peripheral blood lymphocytes. J Auton Pharmacol, 20 (5-6): 305-12. [PMID:11350496]

131. Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M. (2015) Heteromerization of chemokine (C-X-C motif) receptor 4 with α1A/B-adrenergic receptors controls α1-adrenergic receptor function. Proc Natl Acad Sci U S A, 112 (13): E1659-68. [PMID:25775528]

132. Walden PD, Gerardi C, Lepor H. (1999) Localization and expression of the alpha1A-1, alpha1B and alpha1D-adrenoceptors in hyperplastic and non-hyperplastic human prostate. J Urol, 161 (2): 635-40. [PMID:9915474]

133. Waugh DJ, Gaivin RJ, Damron DS, Murray PA, Perez DM. (1999) Binding, partial agonism, and potentiation of alpha(1)-adrenergic receptor function by benzodiazepines: A potential site of allosteric modulation. J Pharmacol Exp Ther, 291 (3): 1164-71. [PMID:10565838]

134. Waugh DJ, Gaivin RJ, Zuscik MJ, Gonzalez-Cabrera P, Ross SA, Yun J, Perez DM. (2001) Phe-308 and Phe-312 in transmembrane domain 7 are major sites of alpha 1-adrenergic receptor antagonist binding. Imidazoline agonists bind like antagonists. J Biol Chem, 276 (27): 25366-71. [PMID:11331292]

135. Wetzel JM, Miao SW, Forray C, Borden LA, Branchek TA, Gluchowski C. (1995) Discovery of alpha 1a-adrenergic receptor antagonists based on the L-type Ca2+ channel antagonist niguldipine. J Med Chem, 38 (10): 1579-81. [PMID:7752182]

136. White CW, da Silva Junior ED, Lim L, Ventura S. (2019) What makes the α1A -adrenoceptor gene product assume an α1L -adrenoceptor phenotype?. Br J Pharmacol, 176 (14): 2358-2365. [PMID:30719698]

137. Williams LM, He X, Vaid TM, Abdul-Ridha A, Whitehead AR, Gooley PR, Bathgate RAD, Williams SJ, Scott DJ. (2019) Diazepam is not a direct allosteric modulator of α1-adrenoceptors, but modulates receptor signaling by inhibiting phosphodiesterase-4. Pharmacol Res Perspect, 7 (1): e00455. [PMID:30619611]

138. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S et al.. (1999) In vitro alpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br J Pharmacol, 127 (1): 252-8. [PMID:10369480]

139. Willis MS, Ilaiwy A, Montgomery MD, Simpson PC, Jensen BC. (2016) The alpha-1A adrenergic receptor agonist A61603 reduces cardiac polyunsaturated fatty acid and endocannabinoid metabolites associated with inflammation in vivo. Metabolomics, 12 (10). [PMID:28533737]

140. Wright CD, Chen Q, Baye NL, Huang Y, Healy CL, Kasinathan S, O'Connell TD. (2008) Nuclear alpha1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. Circ Res, 103 (9): 992-1000. [PMID:18802028]

141. Wright CD, Wu SC, Dahl EF, Sazama AJ, O'Connell TD. (2012) Nuclear localization drives α1-adrenergic receptor oligomerization and signaling in cardiac myocytes. Cell Signal, 24 (3): 794-802. [PMID:22120526]

142. Xie HG, Kim RB, Stein CM, Gainer JV, Brown NJ, Wood AJ. (1999) Alpha1A-adrenergic receptor polymorphism: association with ethnicity but not essential hypertension. Pharmacogenetics, 9 (5): 651-6. [PMID:10591546]

143. Yan M, Sun J, Bird PI, Liu DL, Grigg M, Lim YL. (2001) Alpha1A- and alpha1B-adrenoceptors are the major subtypes in human saphenous vein. Life Sci, 68 (10): 1191-8. [PMID:11228103]

144. Yanase H, Wang X, Momota Y, Nimura T, Kawatani M. (2008) The involvement of urothelial alpha1A adrenergic receptor in controlling the micturition reflex. Biomed Res, 29 (5): 239-44. [PMID:18997438]

145. Yeh CC, Fan Y, Xu Y, Yang YL, Simpson PC, Mann MJ. (2017) Shift toward greater pathologic post-myocardial infarction remodeling with loss of the adaptive hypertrophic signaling of alpha1 adrenergic receptors in mice. PLoS One, 12 (12): e0188471. [PMID:29216197]

146. Yoshio R, Taniguchi T, Itoh H, Muramatsu I. (2001) Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn J Pharmacol, 86 (2): 189-95. [PMID:11459121]

147. Yu ZY, Tan JC, McMahon AC, Iismaa SE, Xiao XH, Kesteven SH, Reichelt ME, Mohl MC, Smith NJ, Fatkin D et al.. (2014) RhoA/ROCK signaling and pleiotropic α1A-adrenergic receptor regulation of cardiac contractility. PLoS One, 9 (6): e99024. [PMID:24919197]

148. Zacharia J, Mauban JR, Raina H, Fisher SA, Wier WG. (2013) High vascular tone of mouse femoral arteries in vivo is determined by sympathetic nerve activity via α1A- and α1D-adrenoceptor subtypes. PLoS One, 8 (6): e65969. [PMID:23776582]

149. Zhang H, Faber JE. (2001) Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and mediated by different alpha1-adrenoceptor subtypes. Circ Res, 89 (9): 815-22. [PMID:11679412]

150. Zhang Y, Kolli T, Hivley R, Jaber L, Zhao FI, Yan J, Herness S. (2010) Characterization of the expression pattern of adrenergic receptors in rat taste buds. Neuroscience, 169 (3): 1421-37. [PMID:20478367]

151. Zhao MM, Hwa J, Perez DM. (1996) Identification of critical extracellular loop residues involved in alpha 1-adrenergic receptor subtype-selective antagonist binding. Mol Pharmacol, 50 (5): 1118-26. [PMID:8913343]

152. Zhao X, Balaji P, Pachon R, Beniamen DM, Vatner DE, Graham RM, Vatner SF. (2015) Overexpression of Cardiomyocyte α1A-Adrenergic Receptors Attenuates Postinfarct Remodeling by Inducing Angiogenesis Through Heterocellular Signaling. Arterioscler Thromb Vasc Biol, 35 (11): 2451-9. [PMID:26338300]

153. Zhao X, Park J, Ho D, Gao S, Yan L, Ge H, Iismaa S, Lin L, Tian B, Vatner DE et al.. (2012) Cardiomyocyte overexpression of the α1A-adrenergic receptor in the rat phenocopies second but not first window preconditioning. Am J Physiol Heart Circ Physiol, 302 (8): H1614-24. [PMID:22307672]

Contributors

Show »

How to cite this page