Top ▲

TRPV2

Click here for help

Target id: 508

Nomenclature: TRPV2

Family: Transient Receptor Potential channels (TRP)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 764 17p11.2 TRPV2 transient receptor potential cation channel subfamily V member 2 7
Mouse 6 1 756 11 B2 Trpv2 transient receptor potential cation channel, subfamily V, member 2 23
Rat 6 1 761 10q23 Trpv2 transient receptor potential cation channel, subfamily V, member 2 7
Previous and Unofficial Names Click here for help
GRC | OTRPC2 | VRL-1 | vanilloid receptor-like protein 1 | Vrl1 | transient receptor potential cation channel, subfamily V, member 2 | transient receptor potential cation channel
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the TRPV2 ion channel in complex with RTx
PDB Id:  6BWJ
Ligand:  resiniferatoxin
Resolution:  3.1Å
Species:  Rabbit
References:  65
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the TRPV2 ion channel
PDB Id:  6BWM
Ligand:  Ca2+
Resolution:  3.9Å
Species:  Rabbit
References:  65
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
TRPV1 27,51
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
Acyl CoA binding domain protein (ACBD) 3 55
Recombinase gene activator protein (RGA) 4,56
Functional Characteristics Click here for help
Conducts mono- and di-valent cations (PCa/PNa = 0.9-2.9); dual (inward and outward) rectification; current increases upon repetitive activation by heat; translocates to cell surface in response to IGF-1 to induce a constitutively active conductance, translocates to the cell surface in response to membrane stretch. Cannabidiol sensitizes TRPV2 channels to activation by 2APB [14].
Ion Selectivity and Conductance Click here for help
Species:  Rat
Rank order:  Ca2+ > Mg2+ > Cs+ = K+ = Na+
References:  7

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
diphenylboronic anhydride Small molecule or natural product Click here for species-specific activity table Mm Agonist - - 1x10-4 -80.0 9,21
Conc range: 1x10-4 M [9,21]
Holding voltage: -80.0 mV
lysophosphatidylcholine Small molecule or natural product Mm Activation - - 1x10-6 - 33,35
Conc range: 1x10-6 M [33,35]
lysophosphatidylinositol Small molecule or natural product Mm Activation - - 1x10-6 - 35
Conc range: 1x10-6 M [35]
insulin-like growth factor 1 {Sp: Mouse} Peptide Mm Agonist - - 2x10-9 -60.0 23
Conc range: 2x10-9 M [23]
Holding voltage: -60.0 mV
neuropeptide head activator Peptide Mm Agonist - - 2x10-9 -60.0 6
Conc range: 2x10-9 M [6]
Holding voltage: -60.0 mV
cannabidiol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Activation 5.4 pEC50 - - 50
pEC50 5.4 (EC50 3.7x10-6 M) [50]
2-APB Small molecule or natural product Ligand has a PDB structure Rn - 5.0 pEC50 - - 44,50
pEC50 5.0 (EC50 1x10-5 M) [44,50]
Δ9-tetrahydrocannabinol Small molecule or natural product Approved drug Ligand has a PDB structure Rn Activation 4.8 pEC50 - - 50
pEC50 4.8 (EC50 1.4x10-5 M) [50]
cannabidiol Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Activation 4.5 pEC50 - - 50
pEC50 4.5 (EC50 3.17x10-5 M) [50]
probenecid Small molecule or natural product Approved drug Ligand has a PDB structure Rn Activation 4.5 pEC50 - - 3
pEC50 4.5 (EC50 3.19x10-5 M) [3]
cannabinol Small molecule or natural product Rn Activation 4.1 pEC50 - - 50
pEC50 4.1 (EC50 7.7x10-5 M) [50]
2-APB Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Agonist 3.8 – 3.9 pEC50 - Physiological 17,21
pEC50 3.8 – 3.9 (EC50 1.6x10-4 – 1.29x10-4 M) [17,21]
Holding voltage: Physiological
View species-specific activator tables
Activator Comments
Further evidence for the role of 2-APB as an agonist of mouse TRPV2 is provided by [32] and [33]. TRPV2 is also activated by heat and cell swelling/stretch [7,10,12,38,53].

fMet-Leu-Phe has also been noted to activate the mouse TRPV2 [41-42].

Species differences in activation: rodent TRPV2 is activated by the nonselective agonists 2-APB, Δ9-THC, or noxious heat (∼53°C); human TRPV2 is insensitive to 2-APB and noxious heat, but is activated by Δ9-THC [21,44].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
tetraethylammonium Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Inhibition - - 1x10-2 - 21
Conc range: 1x10-2 M [21]
fampridine Small molecule or natural product Approved drug Click here for species-specific activity table Mm Inhibition - - 5x10-3 - 21
Conc range: 5x10-3 M [21]
TRIM Small molecule or natural product Mm Inhibition - - 5x10-4 - 21
Conc range: 5x10-4 M [21]
citral Small molecule or natural product Ligand has a PDB structure Rn Inhibition - - 5x10-4 - 57
Conc range: 5x10-4 M [57]
SET2 Small molecule or natural product Hs - 6.3 pIC50 - - 8
pIC50 6.3 (IC50 4.6x10-7 M) [8]
ruthenium red Click here for species-specific activity table Mm Antagonist 6.2 pIC50 - -40.0 7
pIC50 6.2 [7]
Holding voltage: -40.0 mV
ruthenium red Click here for species-specific activity table Hs - 6.2 pIC50 - -
pIC50 6.2 (IC50 6x10-7 M)
loratadine Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Inhibition 5.5 pIC50 - - 61
pIC50 5.5 (IC50 3x10-6 M) [61]
tranilast Small molecule or natural product Approved drug Ligand has a PDB structure Immunopharmacology Ligand Hs Inhibition 4.0 – 5.0 pIC50 - - 46
pIC50 4.0 – 5.0 (IC50 1x10-4 – 1x10-5 M) [46]
SKF96365 Small molecule or natural product Click here for species-specific activity table Hs - 4.0 pIC50 - - 21
pIC50 4.0 (IC50 1x10-4 M) [21]
amiloride Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs - - - - -
La3+ Click here for species-specific activity table Hs - - - - -
View species-specific channel blocker tables
Channel Blocker Comments
Tranilast has been reported as a TRPV2 pore blocker with an ID50 of approximately 10µM [46]. Additional studies also report tranilast's inhibition of TRPV2 activity [2,15,28,33-34,45]. SKF96365 is also a TRPV2 pore blocking compound [5,21,64].
Immunopharmacology Comments
Expressed on human and mouse B cells, human dendritic cells and neutrophils, mouse monocytes/macrophages, and human, mouse and rat mast cells [47]. TRPV2 translocation to the plasma membrane plays a role in macrophage chemotaxis [42] and phagocytosis [29].
Cell Type Associations
Immuno Cell Type:  B cells
Cell Ontology Term:   B cell (CL:0000236)
Comment:  Expressed on human and mouse B cells
References:  47
Immuno Cell Type:  Mast cells
Comment:  Expressed on human, mouse and rat mast cells.
References:  47
Immuno Cell Type:  Dendritic cells
Cell Ontology Term:   dendritic cell (CL:0000451)
Comment:  Expressed on human dendritic cells.
References:  47
Immuno Cell Type:  Granulocytes
Cell Ontology Term:   neutrophil (CL:0000775)
Comment:  Expressed on human neutrophils.
References:  47
Immuno Cell Type:  Macrophages & monocytes
Cell Ontology Term:   macrophage (CL:0000235)
Comment:  Expressed on mouse monocytes/macrophages, and plays a role in their chemotactic and phagocytotic processes.
References:  29,47,60
Tissue Distribution Click here for help
Cancer cells: bladder cancer cell line T24, hepatocellular carcinoma, prostate cancer cell lines LNCaP, C4-2, DU145 and PC3
Species:  Human
Technique:  RT-PCR, immunohistochemistry, qPCR and western blot analysis
References:  30,35-36,62
Retinal pigment epithelium, ARPE-19 cells
Species:  Human
Technique:  Calcium imaging
References:  5,11
Skin
Species:  Human
Technique:  Immunohistochemistry, morphometry, double immunoflourescence, and qPCR
References:  58
CD34+ hematopoietic stem cells
Species:  Human
Technique:  RT-PCR
References:  48
Peripheral blood cells
Species:  Human
Technique:  qPCR, immunocytochemistry
References:  52
Glioblastoma cells
Species:  Human
Technique:  Calcium imaging
References:  40
Pancreatic β-cells
Species:  Mouse
Technique:  Immunohistochemistry, western blot analysis, calcium imaging
References:  2,15,28
Spinal motor neurons
Species:  Mouse
Technique:  Immunohistochemistry and in situ hybridization
References:  53
Mouse macrophage cells, TtT/M87, NLRP3 inflammasome, RAW264
Species:  Mouse
Technique:  Immunohistochemistry, immunoflourescence, and qPCR, western blot
References:  10,29,41,63
Inhibitory motor neurons of gastric myenteric plexus
Species:  Mouse
Technique:  RT-PCR and immunohistochemistry
References:  34
Cardiomyocytes
Species:  Mouse
Technique:  qPCR, western blot analysis
References:  24
Olfactory epithelium
Species:  Mouse
Technique:  Immunohistochemistry
References:  1
Intestinal intrinsic sensory and inhibitory motor neurons
Species:  Mouse
Technique:  RT-PCR, immunocytochemistry
References:  33
W264.7 cells (preosteoclasts)
Species:  Mouse
Technique:  Gene chip, RT-PCR, immunocytochemistry, western blot analysis
References:  22
Trigeminal ganglion (TG) neurons innervating dental pulp
Species:  Rat
Technique:  Immunohistochemistry
References:  13
RBL-2H3 mast cells
Species:  Rat
Technique:  calcium imaging response to 2-APB, western blot analysis
References:  21
Dorsal root ganglia, trigeminal ganglia, spinal cord, brain, lung, spleen, intestines.
Species:  Rat
Technique:  Immunocytochemistry, northern blot. calcium imaging, patch-clamp, in vivo pain assays
References:  3,7,26,50,54,59
Brain
Species:  Rat
Technique:  Immunohistochemistry combined with brightfield microscopy
References:  43
Retina
Species:  Rat
Technique:  qPCR; western blot analysis, immunohistochemistry
References:  25
Lung (mouse) and rat primary alveolar type II (ATII) cells
Species:  Rat
Technique:  qPCR, RT-PCR
References:  12,20
Functional Assays Click here for help
Species:  Mouse
Tissue:  MIN6 β-cells
Response measured:  Response to Klotho overexpression
References:  28
Calmodulin binding assay
Species:  Human
Tissue: 
Response measured:  Binding to calmodulin
References:  16
TRPV2 activation
Species:  Human
Tissue:  Glioblastoma cells
Response measured:  TRPV2 activation by cannabidiol
References:  39-40
Species:  Rat
Tissue:  Rat primary alveolar type II (ATII) cells
Response measured:  Response to stretch
References:  12
Involved in regulation of podosome assembly
Species:  Mouse
Tissue:  TtT/M87 macrophage cell line
Response measured: 
References:  41
Caspase-1 and IL-1β measurements
Species:  Mouse
Tissue:  Macrophage NLRP3 inflammasome
Response measured:  Swelling
References:  10
Two-electrode voltage clamp technique.
Species:  Mouse
Tissue:  Xenopus laevis oocytes injected with TRPV2 cDNA.
Response measured:  Activation by heat and block by ruthenium red.
References:  7
Patch clamp (whole-cell recordings).
Species:  Mouse
Tissue:  Aortic myocytes.
Response measured:  Activation by cell swelling.
References:  38
Patch clamp (whole-cell recordings).
Species:  Mouse
Tissue:  CHO cells transfected with the TRPV2 channel.
Response measured:  Activation by insulin-like growth factor I
References:  23
Intracellular Ca2+ imaging.
Species:  Mouse
Tissue:  HEK 293 cells transfected with the TRPV2 channel.
Response measured:  Activation by diphenylboronic anhydride.
References:  9
Calcium imaging; patch clamp RAW264.7 cells (preosteoclasts), osteoclastogenesis
Species:  Mouse
Tissue:  RAW264.7 cells (preosteoclasts)
Response measured:  RANKL-pretreatment; block by ruthenium red
References:  22
Calcium imaging; patch clamp, ELISA VEGF-A measurements
Species:  Human
Tissue:  RPE; ARPE-19 cells
Response measured:  Temperature; IGF-1 responses; block by ruthenium red and lanthanium
References:  11
Patch-clamp; diC8-PIP2, PolyK recordings, calmodulin binding assay, imaging translocation of GFP-PLCδ1-PH
Species:  Rat
Tissue:  F-11, tsA201 cells
Response measured:  2-APB responses in presence and absence of diC8-PIP2, PolyK
References:  32
Calcium imaging; patch clamp myenteric neurons; tension recordings; NO release measurements; gastrointestinal tract transit assay
Species:  Mouse
Tissue:  Mouse intestinal intrinsic sensory and inhibitory motor neurons
Response measured:  Activation by 2-APB, probenecid, and lysophosphatidylcholine; block by tranilast & ruthenium red
References:  33
Echocardiography, myocyte contractility measurement, calcium imaging, patch clamp (whole cell recordings)
Species:  Mouse
Tissue:  Heart, isolated myocytes
Response measured:  Probencid responses
References:  24
Patch clamp (whole-cell and single-channel recordings).
Species:  Mouse
Tissue:  HEK 293 cells transfected with the TRPV2 channel.
Response measured:  Activation by heat and block by ruthenium red.
References:  7
Patch clamp (whole-cell recordings)
Species:  Human
Tissue:  Peripheral blood CD34+ hematopoietic stem cells
Response measured:  Temperature sensitivity
References:  48
Gastric adaptive relaxation and gastric emptying
Species:  Mouse
Tissue:  Isolated mouse stomach
Response measured:  TRPV2 activation by probenecid and inhibition by tranilast
References:  34
Calcium imaging, filter-migration assay, bead phagocytosis, membrane potential measurements
Species:  Mouse
Tissue:  Macrophage cells
Response measured:  THC response; block by ruthenium red
References:  29
Proliferation rate, cell migration, calcium imaging
Species:  Human
Tissue:  Prostate cancer cell lines: LNCaP, C4-2, DU145 and PC3
Response measured:  Proliferation rate, cell migration before and after siRNA or shRNA treatment; following LPS or LPI treatment
References:  35-36
Calcium imaging, patch clamp analysis, calcitonin gene-related peptide release assay from dorsal root ganglia cells
Species:  Rat
Tissue:  dorsal root ganglia cells, overexpression of rat & human TRPV2 in HEK293 cells
Response measured:  Response to cannabidiol, block by ruthenium and siRNA
References:  50
Crystal structure of N-terminal ankyrin repeat domain
Species:  Human
Tissue: 
Response measured: 
References:  31
Physiological Functions Click here for help
Perinatal viability
Species:  Mouse
Tissue: 
References:  49
Thermosensation and nociception (noxious heat).
Species:  Mouse
Tissue:  Dorsal root ganglia neurones.
References:  7
Stretch activation
Species:  Rat
Tissue:  Primary alveolar type II (ATII) cells
References:  12
Gastric adaptive relaxation and gastric emptying
Species:  Mouse
Tissue: 
References:  34
Podosome assembly
Species:  Mouse
Tissue:  Macrophage cell line, TtT/M87
References:  41-42
Osteoclastogenesis
Species:  Mouse
Tissue:  RAW264.7 cells (preosteoclasts)
References:  22
Physiological Consequences of Altering Gene Expression Click here for help
TRPV2 gene silencing in glioblastoma cells
Species:  Human
Tissue:  Glioblastoma
Technique:  siRNA
References:  37,40
Significantly promoted axon outgrowth as a result of shRNA knockdown of TRPV2.
Species:  Mouse
Tissue:  Spinal motor neurons
Technique:  shRNA
References:  63
Diminished response to stretch in TRPV2 gene silenced rat primary alveolar type II (ATII) cells.
Species:  Rat
Tissue:  Rat primary alveolar type II (ATII) cells
Technique:  siRNA
References:  12
TRPV2 gene silencing results in reduced e expression of phospho-Pyk2, increased number of podosomes and eliminated Cs+ currents.
Species:  Mouse
Tissue:  Macrophage cell line, TtT/M87
Technique:  siRNA
References:  41-42
TRPV2 gene silencing suppresses the accelerated exocytotic response induced by insulin; reduces insulin secretion evoked by glucose.
Species:  Mouse
Tissue:  Pancreatic β-cells
Technique:  siRNA
References:  2,15
TRPV2 gene silencing reduces the sustained phase of AngII-mediated Ca2+ transients and attenuates the heat-evoked Ca2+ response.
Species:  Human
Tissue:  Retinal pigment epithelium
Technique:  siRNA
References:  5,11
shRNA knockdown of TRPV2 results in significantly decreased frequency of Ca2+ oscillations and transient inward currents in RANKL-treated preosteoclasts; reduced RANKL-induced NAFTc1 expression, its nuclear translocation, and osteoclastogenesis .
Species:  Mouse
Tissue:  RAW264.7 cells (preosteoclasts)
Technique:  shRNA
References:  22
siRNA silencing of TRPV2 results in attenuated apoptosis due to calcium overload.
Species:  Human
Tissue:  Bladder cell line T24
Technique:  siRNA
References:  62
shRNA knockdown of TRPV2 results in inhibition of LPS-induced TNFalpha and IL-6 production as well as IκBα degradation.
Species:  Mouse
Tissue:  RAW264 macrophages
Technique:  shRNA
References:  63
KNockdown of TRPV2 reduces the growth and invasive properties of PC3 prostate tumors, and diminishes expression of invasive enzymes MMP2, MMP9, and cathepsin B; cell migration is decreased in PC3 cells treated with shTRPV2 I or II.
Species:  Human
Tissue:  Prostate cancer cell lines LNCaP, C4-2, DU145 and PC3
Technique:  siRNA/shRNA
References:  35-36
Transgenic or adenoviral expression of dominant-negative TRPV2 results in inhibition of Ca2+ influx via TRPV2 and ameliorates muscular dystrophy in animal models.
Species:  Mouse
Tissue:  Skeletal muscle from mdx-mice (dystrophin-deficient) and from δ-sarcoglycan (SG)-deficient BIO14.6 hamsters.
Technique:  Transgenic dominant-negative TRPV2 under the control of the α-skeletal actin promoter in skeletal muscle.
References:  19
siRNA knockdown of TRPV2 results in reduced calcitonin gene-related peptide (CGRP) release form dorsal root ganglion neurons.
Species:  Rat
Tissue:  Dorsal root ganglion neurons
Technique:  siRNA
References:  50
Zymosan-, immunoglobulin G (IgG)- and complement-mediated particle binding and phagocytosis is impaired in macrophages lacking the cation channel TRPV2. Macrophages are also defective in chemoattractant-elicited motility; accelerated mortality and greater organ bacterial load when challenged with Listeria monocytogenes. TRPV2 deficient mice show normal behavioral responses to noxious heat over a broad range of temperatures and normal responses to punctate mechanical stimuli, both in the basal state and under hyperalgesic conditions such as peripheral inflammation and L5 spinal nerve ligation. There are no thermosensory consequences of TRPV2 absence. TRPV2 is important for perinatal viability.
Species:  Mouse
Tissue:  In vivo
Technique:  Targeted gene disruption
References:  29,49
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Trpv2tm1Mijc Trpv2tm1Mijc/Trpv2tm1Mijc
involves: 129S6/SvEvTac * C57BL/6
MGI:1341836  MP:0001262 decreased body weight PMID: 20118928 
Trpv2tm1Mijc Trpv2tm1Mijc/Trpv2tm1Mijc
involves: 129S6/SvEvTac * C57BL/6
MGI:1341836  MP:0003799 impaired macrophage migration PMID: 20118928 
Trpv2tm1Mijc Trpv2tm1Mijc/Trpv2tm1Mijc
involves: 129S6/SvEvTac * C57BL/6
MGI:1341836  MP:0001798 impaired macrophage phagocytosis PMID: 20118928 
Trpv2tm1Mijc Trpv2tm1Mijc/Trpv2tm1Mijc
involves: 129S6/SvEvTac * C57BL/6
MGI:1341836  MP:0002412 increased susceptibility to bacterial infection PMID: 20118928 
Trpv2tm1Mijc Trpv2tm1Mijc/Trpv2tm1Mijc
involves: 129S6/SvEvTac * C57BL/6
MGI:1341836  MP:0009788 increased susceptibility to bacterial infection induced morbidity/mortality PMID: 20118928 
Gene Expression and Pathophysiology Click here for help
Upregulation
Tissue or cell type:  Skin
Pathophysiology:  Rosacea
Species:  Human
Technique:  Immunohistochemistry, morphometry, double immunoflourescence and qPCR
References:  58
Overexpression.
Tissue or cell type:  Skeletal and cardiac muscle.
Pathophysiology:  Muscular dystrophy and cardiomyopathy.
Species:  Human
Technique: 
References:  18-19,64
Upregulation
Tissue or cell type:  Dorsal doot ganglia
Pathophysiology:  Inflammation-induced hyperalgesia
Species:  Rat
Technique:  Immunocytochemistry, heat tolerance
References:  54
Upregulation of TRPV2 activity negatively regulates formation of glioblastoma
Tissue or cell type:  Cancer cells
Pathophysiology:  Glioblastoma
Species:  Human
Technique: 
References:  37,39-40
Upregulation
Tissue or cell type:  Hepatocytes
Pathophysiology:  Liver cirrhosis and hepatocellular carcinoma
Species:  Human
Technique:  Immunohistochemistry, qPCR and western blot analysis
References:  30
Upregulation
Tissue or cell type:  Prostate
Pathophysiology:  TRPV2 transcript levels were higher in patients with metastatic cancer (stage M1)
Species:  Human
Technique:  qPCR, cell migration assays
References:  36

References

Show »

1. Ahmed MK, Takumida M, Ishibashi T, Hamamoto T, Hirakawa K. (2009) Expression of transient receptor potential vanilloid (TRPV) families 1, 2, 3 and 4 in the mouse olfactory epithelium. Rhinology, 47 (3): 242-7. [PMID:19839244]

2. Aoyagi K, Ohara-Imaizumi M, Nishiwaki C, Nakamichi Y, Nagamatsu S. (2010) Insulin/phosphoinositide 3-kinase pathway accelerates the glucose-induced first-phase insulin secretion through TrpV2 recruitment in pancreatic β-cells. Biochem J, 432 (2): 375-86. [PMID:20854263]

3. Bang S, Kim KY, Yoo S, Lee SH, Hwang SW. (2007) Transient receptor potential V2 expressed in sensory neurons is activated by probenecid. Neurosci Lett, 425 (2): 120-5. [PMID:17850966]

4. Barnhill JC, Stokes AJ, Koblan-Huberson M, Shimoda LM, Muraguchi A, Adra CN, Turner H. (2004) RGA protein associates with a TRPV ion channel during biosynthesis and trafficking. J Cell Biochem, 91 (4): 808-20. [PMID:14991772]

5. Barro-Soria R, Stindl J, Müller C, Foeckler R, Todorov V, Castrop H, Strauß O. (2012) Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel. PLoS ONE, 7 (11): e49624. [PMID:23185387]

6. Boels K, Glassmeier G, Herrmann D, Riedel IB, Hampe W, Kojima I, Schwarz JR, Schaller HC. (2001) The neuropeptide head activator induces activation and translocation of the growth-factor-regulated Ca(2+)-permeable channel GRC. J Cell Sci, 114 (Pt 20): 3599-606. [PMID:11707512]

7. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature, 398 (6726): 436-41. [PMID:10201375]

8. Chai H, Cheng X, Zhou B, Zhao L, Lin X, Huang D, Lu W, Lv H, Tang F, Zhang Q et al.. (2019) Structure-Based Discovery of a Subtype-Selective Inhibitor Targeting a Transient Receptor Potential Vanilloid Channel. J Med Chem, 62 (3): 1373-1384. [PMID:30620187]

9. Chung MK, Güler AD, Caterina MJ. (2005) Biphasic currents evoked by chemical or thermal activation of the heat-gated ion channel, TRPV3. J Biol Chem, 280 (16): 15928-41. [PMID:15722340]

10. Compan V, Baroja-Mazo A, López-Castejón G, Gomez AI, Martínez CM, Angosto D, Montero MT, Herranz AS, Bazán E, Reimers D et al.. (2012) Cell volume regulation modulates NLRP3 inflammasome activation. Immunity, 37 (3): 487-500. [PMID:22981536]

11. Cordeiro S, Seyler S, Stindl J, Milenkovic VM, Strauss O. (2010) Heat-sensitive TRPV channels in retinal pigment epithelial cells: regulation of VEGF-A secretion. Invest Ophthalmol Vis Sci, 51 (11): 6001-8. [PMID:20539001]

12. Fois G, Wittekindt O, Zheng X, Felder ET, Miklavc P, Frick M, Dietl P, Felder E. (2012) An ultra fast detection method reveals strain-induced Ca(2+) entry via TRPV2 in alveolar type II cells. Biomech Model Mechanobiol, 11 (7): 959-71. [PMID:22190268]

13. Gibbs JL, Melnyk JL, Basbaum AI. (2011) Differential TRPV1 and TRPV2 channel expression in dental pulp. J Dent Res, 90 (6): 765-70. [PMID:21406609]

14. Gochman A, Tan X, Bae C, Chen H, Swartz KJ, Jara-Oseguera A. (2023) Cannabidiol sensitizes TRPV2 channels to activation by 2-APB. bioRxiv,. [PMID:36747846]

15. Hisanaga E, Nagasawa M, Ueki K, Kulkarni RN, Mori M, Kojima I. (2009) Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells. Diabetes, 58 (1): 174-84. [PMID:18984736]

16. Holakovska B, Grycova L, Bily J, Teisinger J. (2011) Characterization of calmodulin binding domains in TRPV2 and TRPV5 C-tails. Amino Acids, 40 (2): 741-8. [PMID:20686800]

17. Hu HZ, Gu Q, Wang C, Colton CK, Tang J, Kinoshita-Kawada M, Lee LY, Wood JD, Zhu MX. (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J Biol Chem, 279 (34): 35741-8. [PMID:15194687]

18. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M. (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol, 161 (5): 957-67. [PMID:12796481]

19. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S. (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet, 18 (5): 824-34. [PMID:19050039]

20. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U. (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res, 35 (10): 1823-30. [PMID:23139135]

21. Juvin V, Penna A, Chemin J, Lin YL, Rassendren FA. (2007) Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol Pharmacol, 72 (5): 1258-68. [PMID:17673572]

22. Kajiya H, Okamoto F, Nemoto T, Kimachi K, Toh-Goto K, Nakayana S, Okabe K. (2010) RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium, 48 (5): 260-9. [PMID:20980052]

23. Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I. (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol, 1 (3): 165-70. [PMID:10559903]

24. Koch SE, Gao X, Haar L, Jiang M, Lasko VM, Robbins N, Cai W, Brokamp C, Varma P, Tranter M et al.. (2012) Probenecid: novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation. J Mol Cell Cardiol, 53 (1): 134-44. [PMID:22561103]

25. Leonelli M, Martins DO, Kihara AH, Britto LR. (2009) Ontogenetic expression of the vanilloid receptors TRPV1 and TRPV2 in the rat retina. Int J Dev Neurosci, 27 (7): 709-18. [PMID:19619635]

26. Lewinter RD, Skinner K, Julius D, Basbaum AI. (2004) Immunoreactive TRPV-2 (VRL-1), a capsaicin receptor homolog, in the spinal cord of the rat. J Comp Neurol, 470 (4): 400-8. [PMID:14961565]

27. Liapi A, Wood JN. (2005) Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur J Neurosci, 22 (4): 825-34. [PMID:16115206]

28. Lin Y, Sun Z. (2012) Antiaging gene Klotho enhances glucose-induced insulin secretion by up-regulating plasma membrane levels of TRPV2 in MIN6 β-cells. Endocrinology, 153 (7): 3029-39. [PMID:22597535]

29. Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, Caterina MJ. (2010) TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol, 11 (3): 232-9. [PMID:20118928]

30. Liu G, Xie C, Sun F, Xu X, Yang Y, Zhang T, Deng Y, Wang D, Huang Z, Yang L et al.. (2010) Clinical significance of transient receptor potential vanilloid 2 expression in human hepatocellular carcinoma. Cancer Genet Cytogenet, 197 (1): 54-9. [PMID:20113837]

31. McCleverty CJ, Koesema E, Patapoutian A, Lesley SA, Kreusch A. (2006) Crystal structure of the human TRPV2 channel ankyrin repeat domain. Protein Sci, 15 (9): 2201-6. [PMID:16882997]

32. Mercado J, Gordon-Shaag A, Zagotta WN, Gordon SE. (2010) Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Neurosci, 30 (40): 13338-47. [PMID:20926660]

33. Mihara H, Boudaka A, Shibasaki K, Yamanaka A, Sugiyama T, Tominaga M. (2010) Involvement of TRPV2 activation in intestinal movement through nitric oxide production in mice. J Neurosci, 30 (49): 16536-44. [PMID:21147993]

34. Mihara H, Suzuki N, Yamawaki H, Tominaga M, Sugiyama T. (2013) TRPV2 ion channels expressed in inhibitory motor neurons of gastric myenteric plexus contribute to gastric adaptive relaxation and gastric emptying in mice. Am J Physiol Gastrointest Liver Physiol, 304 (3): G235-40. [PMID:23203157]

35. Monet M, Gkika D, Lehen'kyi V, Pourtier A, Vanden Abeele F, Bidaux G, Juvin V, Rassendren F, Humez S, Prevarsakaya N. (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta, 1793 (3): 528-39. [PMID:19321128]

36. Monet M, Lehen'kyi V, Gackiere F, Firlej V, Vandenberghe M, Roudbaraki M, Gkika D, Pourtier A, Bidaux G, Slomianny C et al.. (2010) Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance. Cancer Res, 70 (3): 1225-35. [PMID:20103638]

37. Morelli MB, Nabissi M, Amantini C, Farfariello V, Ricci-Vitiani L, di Martino S, Pallini R, Larocca LM, Caprodossi S, Santoni M et al.. (2012) The transient receptor potential vanilloid-2 cation channel impairs glioblastoma stem-like cell proliferation and promotes differentiation. Int J Cancer, 131 (7): E1067-77. [PMID:22492283]

38. Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y. (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res, 93 (9): 829-38. [PMID:14512441]

39. Nabissi M, Morelli MB, Amantini C, Farfariello V, Ricci-Vitiani L, Caprodossi S, Arcella A, Santoni M, Giangaspero F, De Maria R et al.. (2010) TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. Carcinogenesis, 31 (5): 794-803. [PMID:20093382]

40. Nabissi M, Morelli MB, Santoni M, Santoni G. (2013) Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis, 34 (1): 48-57. [PMID:23079154]

41. Nagasawa M, Kojima I. (2012) Translocation of calcium-permeable TRPV2 channel to the podosome: Its role in the regulation of podosome assembly. Cell Calcium, 51 (2): 186-93. [PMID:22226146]

42. Nagasawa M, Nakagawa Y, Tanaka S, Kojima I. (2007) Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J Cell Physiol, 210 (3): 692-702. [PMID:17154364]

43. Nedungadi TP, Dutta M, Bathina CS, Caterina MJ, Cunningham JT. (2012) Expression and distribution of TRPV2 in rat brain. Exp Neurol, 237 (1): 223-37. [PMID:22750329]

44. Neeper MP, Liu Y, Hutchinson TL, Wang Y, Flores CM, Qin N. (2007) Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J Biol Chem, 282 (21): 15894-902. [PMID:17395593]

45. Nie L, Kanzaki M, Shibata H, Kojima I. (1998) Activation of calcium-permeable cation channel by insulin in Chinese hamster ovary cells expressing human insulin receptors. Endocrinology, 139 (1): 179-88. [PMID:9421413]

46. Nie L, Oishi Y, Doi I, Shibata H, Kojima I. (1997) Inhibition of proliferation of MCF-7 breast cancer cells by a blocker of Ca(2+)-permeable channel. Cell Calcium, 22 (2): 75-82. [PMID:9292225]

47. Parenti A, De Logu F, Geppetti P, Benemei S. (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells?. Br J Pharmacol, 173 (6): 953-69. [PMID:26603538]

48. Park KS, Pang B, Park SJ, Lee YG, Bae JY, Park S, Kim I, Kim SJ. (2011) Identification and functional characterization of ion channels in CD34(+) hematopoietic stem cells from human peripheral blood. Mol Cells, 32 (2): 181-8. [PMID:21638203]

49. Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ. (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci, 31 (32): 11425-36. [PMID:21832173]

50. Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. (2008) TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci, 28 (24): 6231-8. [PMID:18550765]

51. Rutter AR, Ma QP, Leveridge M, Bonnert TP. (2005) Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport, 16 (16): 1735-9. [PMID:16237318]

52. Saunders CI, Kunde DA, Crawford A, Geraghty DP. (2007) Expression of transient receptor potential vanilloid 1 (TRPV1) and 2 (TRPV2) in human peripheral blood. Mol Immunol, 44 (6): 1429-35. [PMID:16777226]

53. Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M. (2010) TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci, 30 (13): 4601-12. [PMID:20357111]

54. Shimosato G, Amaya F, Ueda M, Tanaka Y, Decosterd I, Tanaka M. (2005) Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG. Pain, 119 (1-3): 225-32. [PMID:16298071]

55. Stokes AJ, Shimoda LM, Koblan-Huberson M, Adra CN, Turner H. (2004) A TRPV2-PKA signaling module for transduction of physical stimuli in mast cells. J Exp Med, 200 (2): 137-47. [PMID:15249591]

56. Stokes AJ, Wakano C, Del Carmen KA, Koblan-Huberson M, Turner H. (2005) Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. J Cell Biochem, 94 (4): 669-83. [PMID:15547947]

57. Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE. (2008) Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS ONE, 3 (5): e2082. [PMID:18461159]

58. Sulk M, Seeliger S, Aubert J, Schwab VD, Cevikbas F, Rivier M, Nowak P, Voegel JJ, Buddenkotte J, Steinhoff M. (2012) Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea. J Invest Dermatol, 132 (4): 1253-62. [PMID:22189789]

59. Tamura S, Morikawa Y, Senba E. (2005) TRPV2, a capsaicin receptor homologue, is expressed predominantly in the neurotrophin-3-dependent subpopulation of primary sensory neurons. Neuroscience, 130 (1): 223-8. [PMID:15561438]

60. Vaeth M, Feske S. (2018) Ion channelopathies of the immune system. Curr Opin Immunol, 52: 39-50. [PMID:29635109]

61. Van den Eynde C, Held K, Ciprietti M, De Clercq K, Kerselaers S, Marchand A, Chaltin P, Voets T, Vriens J. (2022) Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2. Eur J Pharmacol, 928: 175086. [PMID:35714693]

62. Yamada T, Ueda T, Shibata Y, Ikegami Y, Saito M, Ishida Y, Ugawa S, Kohri K, Shimada S. (2010) TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer. Urology, 76 (2): 509.e1-7. [PMID:20546877]

63. Yamashiro K, Sasano T, Tojo K, Namekata I, Kurokawa J, Sawada N, Suganami T, Kamei Y, Tanaka H, Tajima N et al.. (2010) Role of transient receptor potential vanilloid 2 in LPS-induced cytokine production in macrophages. Biochem Biophys Res Commun, 398 (2): 284-9. [PMID:20599720]

64. Zanou N, Iwata Y, Schakman O, Lebacq J, Wakabayashi S, Gailly P. (2009) Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions. FEBS Lett, 583 (22): 3600-4. [PMID:19840792]

65. Zubcevic L, Le S, Yang H, Lee SY. (2018) Conformational plasticity in the selectivity filter of the TRPV2 ion channel. Nat Struct Mol Biol, 25 (5): 405-415. [PMID:29728656]

Contributors

Show »

How to cite this page