Top ▲

TRPC5

Click here for help

Target id: 490

Nomenclature: TRPC5

Family: Transient Receptor Potential channels (TRP)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 973 Xq23 TRPC5 transient receptor potential cation channel subfamily C member 5
Mouse 6 1 975 X 65.49 cM Trpc5 transient receptor potential cation channel, subfamily C, member 5
Rat 6 1 974 Xq14 Trpc5 transient receptor potential cation channel, subfamily C, member 5
Previous and Unofficial Names Click here for help
CCE2 | TRP5 | short transient receptor potential channel 5 | transient receptor protein 5 | transient receptor potential cation channel
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
TRPC1 41
TRPC3 42
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
calmodulin 30
NHERF 43
MxA 20
CaBP1 17
i3 13
D2 receptor 11
NCS-1 12
SESTD1 23
STIM1 48
Functional Characteristics Click here for help
γ = 41-63 pS; conducts mono-and di-valent cations non-selectively (PCa/PNa = 1.8 – 9.5); dual rectification (inward and outward) as a homomer, outwardly rectifying when expressed with TRPC1 or TRPC4
Ion Selectivity and Conductance Click here for help
Species:  Mouse
Rank order:  Ca2+ > K+ [35.0 pS] = Cs+ = Na+
References:  39,41
Voltage Dependence Comments
Obukhov and Nowycky [28] have shown voltage dependent TRPC5 currents, yet the parameters have not been fully described.
Chemical activators (Human)
NO-mediated cysteine S-nitrosylation (disputed), potentiation by extracellular protons
Physical activators (Human)
Membrane stretch

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
Gd3+ Click here for species-specific activity table Hs - - - 1x10-4 -
Conc range: 1x10-4 M
Pb2+ Click here for species-specific activity table Hs - - - 5x10-6 -
Conc range: 5x10-6 M
(-)-englerin A Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 8.1 pEC50 - - 1
pEC50 8.1 [1]
AM237 Small molecule or natural product Hs Activation 7.7 pEC50 - - 25
pEC50 7.7 (EC50 2x10-8 M) [25]
Description: EC50 determined in HEK T-REx cells over-expressing homomeric TRPC5 channels, by measuring ligand-induced modulation of intracellular Ca2+.
tonantzitlolone Small molecule or natural product Click here for species-specific activity table Hs Activation 7.1 pEC50 - - 38
pEC50 7.1 (EC50 8.3x10-8 M) [38]
intracellular Ca2+ Click here for species-specific activity table Ligand is endogenous in the given species Hs - 6.2 pEC50 - -
pEC50 6.2 (EC50 6.35x10-7 M) at negative potentials
Ca2+ Click here for species-specific activity table Mm Activation 6.0 pEC50 - - 3,10
pEC50 6.0 Internal calcium [3,10]
BTD Small molecule or natural product Hs Activation 5.8 – 5.9 pEC50 - - 2
pEC50 5.9 (EC50 1.3x10-6 M) [2]
Description: Whole cell patch-clamp measurements using HEK293 cells expressing hTRPC5.
pEC50 5.8 (EC50 1.4x10-6 M) [2]
Description: Measuring intracellular calcium elevation in HEK293 cells expressing hTRPC5.
riluzole Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Activation 5.0 pEC50 - - 36
pEC50 5.0 (EC50 9.2x10-6 M) [36]
methylprednisolone Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Hs Activation 4.9 pEC50 - - 2
pEC50 4.9 (EC50 1.2x10-5 M) [2]
Description: Measuring intracellular calcium elevation in HEK293 cells expressing hTRPC5.
rosiglitazone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Activation 4.5 pEC50 - - 22
pEC50 4.5 [22]
La3+ Click here for species-specific activity table Hs - - - - -
μM range
lysophosphatidylcholine Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Hs - - - - -
genistein Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - - - - - 44
independent of tyrosine kinase inhibition [44]
daidzein Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - - - - -
View species-specific activator tables
Activator Comments
Activated by stimulation of GPCRs coupled to Gq stimulation. Precise pathway is unclear. Also, potentiated by 10-100 μM La3+ and Gd3+ [14,39,41]. When complexed with TRPC1, a current with a unique I-V relationship is formed [41].

TRPC5 has been proposed to be activated by receptors coupled to Gαi and Gαo [13], to be potentiated by nitric oxide [46] and external protons [27], and activated by caplain cleavage [16].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
La3+ Click here for species-specific activity table Mm Antagonist - - 5x10-3 -60.0 14
Conc range: 5x10-3 M [14]
Holding voltage: -60.0 mV
galangin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - 6.3 pKi - - 26
pKi 6.3 (Ki 4.5x10-7 M) [26]
Description: Inhibition of lanthanide-evoked calcium entry in HEK 293 cells overexpressing hTRPC5, by patch-clamp recording.
Pico145 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 8.9 pIC50 - - 37
pIC50 8.9 (IC50 1.3x10-9 M) [37]
Description: Inhibition of englerin A-induced calcium entry in to HEK293 cells stably expressing hTRPC5 by calcium imaging.
HC-070 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.0 pIC50 - - 15
pIC50 8.0 (IC50 9.3x10-9 M) [15]
Description: Inhibiteion of calcium influx into cells expressing recombinant hTRPC5.
AM12 Small molecule or natural product Hs Inhibition 6.6 pIC50 - - 26
pIC50 6.6 (IC50 2.8x10-7 M) [26]
Description: Measuring inhibition of lanthanide-evoked calcium entry in to TRPC5 overexpressing HEK293 cells by calcium imaging.
GFB-8438 Small molecule or natural product Ligand has a PDB structure Hs Inhibition 6.5 pIC50 - - 47
pIC50 6.5 [47]
clemizole Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs - 6.0 pIC50 - - 35
pIC50 6.0 (IC50 1.1x10-6 M) [35]
KB-R7943 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 5.9 pIC50 - - 18
pIC50 5.9 (IC50 1.38x10-6 M) [18]
progesterone Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 5.3 pIC50 - - 21
pIC50 5.3 [21]
M084 Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Inhibition 5.1 pIC50 - - 40,50
pIC50 5.1 (IC50 8.2x10-6 M) [40]
Description: As determined by the FMP assay using DAMGO to stimulate Gi/o via the coexpressed μ receptor.
pIC50 5.1 [50]
ML204 Small molecule or natural product Click here for species-specific activity table Hs - ~5.0 pIC50 - - 24
pIC50 ~5.0 (IC50 ~1x10-5 M) [24]
bromoenol lactone Small molecule or natural product Mm Inhibition 5.0 pIC50 - - 4
pIC50 5.0 [4]
AC1903 Small molecule or natural product Hs Inhibition 4.8 pIC50 - - 49
pIC50 4.8 (IC50 1.47x10-5 M) [49]
Description: Inhibition of riluzole-activated TRPC5 whole-cell current by patch-clamp recording.
2-APB Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 4.7 pIC50 - -80.0 45
pIC50 4.7 (IC50 2x10-5 M) [45]
Holding voltage: -80.0 mV
Mg2+ Click here for species-specific activity table Rn Inhibition 3.3 pIC50 - - 27
pIC50 3.3 Internal magnesium [27]
chlorpromazine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs - - - - -
BTP2 Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs - - - - -
SKF96365 Small molecule or natural product Click here for species-specific activity table Hs - - - - -
flufenamic acid Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Immunopharmacology Ligand Hs - - - - -
GsMTx-4 Peptide Click here for species-specific activity table Hs - - - - -
View species-specific channel blocker tables
Channel Blocker Comments
It is not know for any of the inhibitors whether they act as pore blockers or gating inhibitors. Lanthanum and gadolinium block the channel, as well as potentiate [14]. 10µM external ML204 completely blocks mouse TRPC5 [24]. Internal ATP has been reported to block TRPC5 [6].
Immunopharmacology Comments
Expressed on mouse T cells [31].
Cell Type Associations
Immuno Cell Type:  T cells
Comment:  TRPC5 (along with TRPC3 and TRPC6) is involved in TCR signalling, proliferation and autoimmune suppression.
References:  31
Tissue Distribution Click here for help
Brain, testes, kidney, uterus.
Species:  Mouse
Technique:  Northern Blot
References:  29
Hippocampus, cerebellar Purkinje neurones, mitral cells of olfactory bulb.
Species:  Mouse
Technique:  In situ hybridisation
References:  32
Brain: hippocampus, cerebellum, cortex and substantia nigra.
Species:  Mouse
Technique:  In situ hybridisation
References:  34
Hippocampus CA1/3 cells, dentate gyrus cells.
Species:  Rat
Technique:  Immunohistochemistry
References:  5,8
Physiological Functions Click here for help
Possible component of muscarininc activated current in gastric smooth muscle cells.
Species:  Mouse
Tissue:  Gastric smooth muscle.
References:  19
Regulation of growth cone extension.
Species:  Rat
Tissue:  Brain
References:  7,9
Contributes to receptor activated current in amygdala neurons to influence fear and anxiety behavior.
Species:  Mouse
Tissue:  Brain: amygdala
References:  34
Contributes to calcium entry that causes growth cone collapse in hippocampal neurons.
Species:  Mouse
Tissue:  Brain: hippocampal neurons
References:  16
Contributes to cold sensation in peripheral neurons.
Species:  Mouse
Tissue:  Dorsal root ganglion neurons
References:  51
Controls dendrite patterning in cerebellar granule neurons.
Species:  Mouse
Tissue:  Brain: cerebellum
References:  33
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Trpc5tm1.1Clph Trpc5tm1.1Clph/Trpc5tm1.1Clph
involves: 129/Sv
MGI:109524  MP:0002910 abnormal excitatory postsynaptic currents PMID: 19450521 
Trpc5tm1.1Clph Trpc5tm1.1Clph/Y
involves: 129/Sv
MGI:109524  MP:0002910 abnormal excitatory postsynaptic currents PMID: 19450521 
Trpc5tm1.1Clph Trpc5tm1.1Clph/Trpc5tm1.1Clph
involves: 129/Sv
MGI:109524  MP:0001364 decreased anxiety-related response PMID: 19450521 
Trpc5tm1.1Clph Trpc5tm1.1Clph/Y
involves: 129/Sv
MGI:109524  MP:0001364 decreased anxiety-related response PMID: 19450521 
Trpc5tm1.1Clph Trpc5tm1.1Clph/Trpc5tm1.1Clph
involves: 129/Sv
MGI:109524  MP:0003460 decreased fear-related response PMID: 19450521 
Trpc5tm1.1Clph Trpc5tm1.1Clph/Y
involves: 129/Sv
MGI:109524  MP:0003460 decreased fear-related response PMID: 19450521 
Trpc5tm1.1Clph Trpc5tm1.1Clph/Trpc5tm1.1Clph
involves: 129/Sv
MGI:109524  MP:0003459 increased fear-related response PMID: 19450521 
Trpc5tm1.1Clph Trpc5tm1.1Clph/Y
involves: 129/Sv
MGI:109524  MP:0003459 increased fear-related response PMID: 19450521 

References

Show »

1. Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S et al.. (2015) (-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed Engl, 54 (12): 3787-91. [PMID:25707820]

2. Beckmann H, Richter J, Hill K, Urban N, Lemoine H, Schaefer M. (2017) A benzothiadiazine derivative and methylprednisolone are novel and selective activators of transient receptor potential canonical 5 (TRPC5) channels. Cell Calcium, 66: 10-18. [PMID:28807145]

3. Blair NT, Kaczmarek JS, Clapham DE. (2009) Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol, 133 (5): 525-46. [PMID:19398778]

4. Chakraborty S, Berwick ZC, Bartlett PJ, Kumar S, Thomas AP, Sturek M, Tune JD, Obukhov AG. (2011) Bromoenol lactone inhibits voltage-gated Ca2+ and transient receptor potential canonical channels. J Pharmacol Exp Ther, 339 (2): 329-40. [PMID:21795434]

5. Chung YH, Sun Ahn H, Kim D, Hoon Shin D, Su Kim S, Yong Kim K, Bok Lee W, Ik Cha C. (2006) Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res, 1085 (1): 132-7. [PMID:16580647]

6. Dattilo M, Penington NJ, Williams K. (2008) Inhibition of TRPC5 channels by intracellular ATP. Mol Pharmacol, 73 (1): 42-9. [PMID:17925457]

7. Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling TR, Wayman GA. (2009) Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci, 29 (31): 9794-808. [PMID:19657032]

8. De March Z, Giampà C, Patassini S, Bernardi G, Fusco FR. (2006) Cellular localization of TRPC5 in the substantia nigra of rat. Neurosci Lett, 402 (1-2): 35-9. [PMID:16635549]

9. Greka A, Navarro B, Oancea E, Duggan A, Clapham DE. (2003) TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci, 6 (8): 837-45. [PMID:12858178]

10. Gross SA, Guzmán GA, Wissenbach U, Philipp SE, Zhu MX, Bruns D, Cavalié A. (2009) TRPC5 is a Ca2+-activated channel functionally coupled to Ca2+-selective ion channels. J Biol Chem, 284 (49): 34423-32. [PMID:19815560]

11. Hannan MA, Kabbani N, Paspalas CD, Levenson R. (2008) Interaction with dopamine D2 receptor enhances expression of transient receptor potential channel 1 at the cell surface. Biochim Biophys Acta, 1778 (4): 974-82. [PMID:18261457]

12. Hui H, McHugh D, Hannan M, Zeng F, Xu SZ, Khan SU, Levenson R, Beech DJ, Weiss JL. (2006) Calcium-sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth. J Physiol (Lond.), 572 (Pt 1): 165-72. [PMID:16469785]

13. Jeon JP, Hong C, Park EJ, Jeon JH, Cho NH, Kim IG, Choe H, Muallem S, Kim HJ, So I. (2012) Selective Gαi subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels. J Biol Chem, 287 (21): 17029-39. [PMID:22457348]

14. Jung S, Mühle A, Schaefer M, Strotmann R, Schultz G, Plant TD. (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem, 278 (6): 3562-71. [PMID:12456670]

15. Just S, Chenard BL, Ceci A, Strassmaier T, Chong JA, Blair NT, Gallaschun RJ, Del Camino D, Cantin S, D'Amours M et al.. (2018) Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice. PLoS ONE, 13 (1): e0191225. [PMID:29385160]

16. Kaczmarek JS, Riccio A, Clapham DE. (2012) Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proc Natl Acad Sci USA, 109 (20): 7888-92. [PMID:22547824]

17. Kinoshita-Kawada M, Tang J, Xiao R, Kaneko S, Foskett JK, Zhu MX. (2005) Inhibition of TRPC5 channels by Ca2+-binding protein 1 in Xenopus oocytes. Pflugers Arch, 450 (5): 345-54. [PMID:15895247]

18. Kraft R. (2007) The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Commun, 361 (1): 230-6. [PMID:17658472]

19. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW. (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol, 284 (4): G604-16. [PMID:12631560]

20. Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G. (2005) MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem, 280 (19): 19393-400. [PMID:15757897]

21. Majeed Y, Amer MS, Agarwal AK, McKeown L, Porter KE, O'Regan DJ, Naylor J, Fishwick CW, Muraki K, Beech DJ. (2011) Stereo-selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. Br J Pharmacol, 162 (7): 1509-20. [PMID:21108630]

22. Majeed Y, Bahnasi Y, Seymour VA, Wilson LA, Milligan CJ, Agarwal AK, Sukumar P, Naylor J, Beech DJ. (2011) Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol, 79 (6): 1023-30. [PMID:21406603]

23. Miehe S, Bieberstein A, Arnould I, Ihdene O, Rütten H, Strübing C. (2010) The phospholipid-binding protein SESTD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5. J Biol Chem, 285 (16): 12426-34. [PMID:20164195]

24. Miller M, Shi J, Zhu Y, Kustov M, Tian JB, Stevens A, Wu M, Xu J, Long S, Yang P et al.. (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem, 286 (38): 33436-46. [PMID:21795696]

25. Minard A, Bauer CC, Chuntharpursat-Bon E, Pickles IB, Wright DJ, Ludlow MJ, Burnham MP, Warriner SL, Beech DJ, Muraki K et al.. (2019) Potent, selective, and subunit-dependent activation of TRPC5 channels by a xanthine derivative. Br J Pharmacol, 176 (20): 3924-3938. [PMID:31277085]

26. Naylor J, Minard A, Gaunt HJ, Amer MS, Wilson LA, Migliore M, Cheung SY, Rubaiy HN, Blythe NM, Musialowski KE et al.. (2016) Natural and synthetic flavonoid modulation of TRPC5 channels. Br J Pharmacol, 173 (3): 562-74. [PMID:26565375]

27. Obukhov AG, Nowycky MC. (2005) A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. J Neurosci, 25 (5): 1234-9. [PMID:15689561]

28. Obukhov AG, Nowycky MC. (2008) TRPC5 channels undergo changes in gating properties during the activation-deactivation cycle. J Cell Physiol, 216 (1): 162-71. [PMID:18247362]

29. Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y. (1998) Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem, 273 (17): 10279-87. [PMID:9553080]

30. Ordaz B, Tang J, Xiao R, Salgado A, Sampieri A, Zhu MX, Vaca L. (2005) Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation. J Biol Chem, 280 (35): 30788-96. [PMID:15987684]

31. Parenti A, De Logu F, Geppetti P, Benemei S. (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells?. Br J Pharmacol, 173 (6): 953-69. [PMID:26603538]

32. Philipp S, Hambrecht J, Braslavski L, Schroth G, Freichel M, Murakami M, Cavalié A, Flockerzi V. (1998) A novel capacitative calcium entry channel expressed in excitable cells. EMBO J, 17 (15): 4274-82. [PMID:9687496]

33. Puram SV, Riccio A, Koirala S, Ikeuchi Y, Kim AH, Corfas G, Bonni A. (2011) A TRPC5-regulated calcium signaling pathway controls dendrite patterning in the mammalian brain. Genes Dev, 25 (24): 2659-73. [PMID:22135323]

34. Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ et al.. (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell, 137 (4): 761-72. [PMID:19450521]

35. Richter JM, Schaefer M, Hill K. (2014) Clemizole hydrochloride is a novel and potent inhibitor of transient receptor potential channel TRPC5. Mol Pharmacol, 86 (5): 514-21. [PMID:25140002]

36. Richter JM, Schaefer M, Hill K. (2014) Riluzole activates TRPC5 channels independently of PLC activity. Br J Pharmacol, 171 (1): 158-70. [PMID:24117252]

37. Rubaiy HN, Ludlow MJ, Henrot M, Gaunt HJ, Miteva K, Cheung SY, Tanahashi Y, Hamzah N, Musialowski KE, Blythe NM et al.. (2017) Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels. J Biol Chem, 292 (20): 8158-8173. [PMID:28325835]

38. Rubaiy HN, Ludlow MJ, Siems K, Norman K, Foster R, Wolf D, Beutler JA, Beech DJ. (2018) Tonantzitlolone is a nanomolar potency activator of transient receptor potential canonical 1/4/5 channels. Br J Pharmacol, 175 (16): 3361-3368. [PMID:29859013]

39. Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. (2000) Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem, 275 (23): 17517-26. [PMID:10837492]

40. Sharma S, Hopkins CR. (2019) Review of Transient Receptor Potential Canonical (TRPC5) Channel Modulators and Diseases. J Med Chem, 62 (17): 7589-7602. [PMID:30943030]

41. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron, 29 (3): 645-55. [PMID:11301024]

42. Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem, 278 (40): 39014-9. [PMID:12857742]

43. Tang Y, Tang J, Chen Z, Trost C, Flockerzi V, Li M, Ramesh V, Zhu MX. (2000) Association of mammalian trp4 and phospholipase C isozymes with a PDZ domain-containing protein, NHERF. J Biol Chem, 275 (48): 37559-64. [PMID:10980202]

44. Wong CO, Huang Y, Yao X. (2010) Genistein potentiates activity of the cation channel TRPC5 independently of tyrosine kinases. Br J Pharmacol, 159 (7): 1486-96. [PMID:20233211]

45. Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ. (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol, 145 (4): 405-14. [PMID:15806115]

46. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y. (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol, 2 (11): 596-607. [PMID:16998480]

47. Yu M, Ledeboer MW, Daniels M, Malojcic G, Tibbitts TT, Coeffet-Le Gal M, Pan-Zhou XR, Westerling-Bui A, Beconi M, Reilly JF et al.. (2019) Discovery of a Potent and Selective TRPC5 Inhibitor, Efficacious in a Focal Segmental Glomerulosclerosis Model. ACS Med Chem Lett, 10 (11): 1579-1585. [PMID:31749913]

48. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol, 9 (6): 636-45. [PMID:17486119]

49. Zhou Y, Castonguay P, Sidhom EH, Clark AR, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung JY, Andreeva S et al.. (2017) A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science, 358 (6368): 1332-1336. [PMID:29217578]

50. Zhu Y, Lu Y, Qu C, Miller M, Tian J, Thakur DP, Zhu J, Deng Z, Hu X, Wu M et al.. (2015) Identification and optimization of 2-aminobenzimidazole derivatives as novel inhibitors of TRPC4 and TRPC5 channels. Br J Pharmacol, 172 (14): 3495-509. [PMID:25816897]

51. Zimmermann K, Lennerz JK, Hein A, Link AS, Kaczmarek JS, Delling M, Uysal S, Pfeifer JD, Riccio A, Clapham DE. (2011) Transient receptor potential cation channel, subfamily C, member 5 (TRPC5) is a cold-transducer in the peripheral nervous system. Proc Natl Acad Sci USA, 108 (44): 18114-9. [PMID:22025699]

Contributors

Show »

How to cite this page