Top ▲
Target id: 2191
Nomenclature: receptor interacting serine/threonine kinase 3
Abbreviated Name: RIPK3
Gene and Protein Information | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | - | 518 | 14q12 | RIPK3 | receptor interacting serine/threonine kinase 3 | |
Mouse | - | 486 | 14 C3 | Ripk3 | receptor-interacting serine-threonine kinase 3 | |
Rat | - | 478 | 15p13 | Ripk3 | receptor-interacting serine-threonine kinase 3 |
Previous and Unofficial Names |
RIP3 | homocysteine respondent protein HCYP2 | RIP-like protein kinase 3 |
Database Links | |
Alphafold | Q9Y572 (Hs), Q9QZL0 (Mm), Q9Z2P5 (Rn) |
BRENDA | 2.7.11.1 |
ChEMBL Target | CHEMBL1795199 (Hs) |
Ensembl Gene | ENSG00000129465 (Hs), ENSMUSG00000022221 (Mm), ENSRNOG00000020465 (Rn) |
Entrez Gene | 11035 (Hs), 56532 (Mm), 246240 (Rn) |
Human Protein Atlas | ENSG00000129465 (Hs) |
KEGG Enzyme | 2.7.11.1 |
KEGG Gene | hsa:11035 (Hs), mmu:56532 (Mm), rno:246240 (Rn) |
OMIM | 605817 (Hs) |
Pharos | Q9Y572 (Hs) |
RefSeq Nucleotide | NM_006871 (Hs), NM_019955 (Mm), NM_139342 (Rn) |
RefSeq Protein | NP_006862 (Hs), NP_064339 (Mm), NP_647558 (Rn) |
UniProtKB | Q9Y572 (Hs), Q9QZL0 (Mm), Q9Z2P5 (Rn) |
Wikipedia | RIPK3 (Hs) |
Enzyme Reaction | ||||
|
Download all structure-activity data for this target as a CSV file
Inhibitors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Immunopharmacology Comments |
RIPK1 and RIPK3 are involved in necroptosis and as such are critical regulators of inflammation and cell death [11-13,15]. RIPK-targeting necroptosis inhibitors are being developed to target inflammation mediated disorders [6], including the development of novel therapeutics for the treatment of TNF-induced systemic inflammatory response syndrome (SIRS) and sepsis, as well as cancer [9,16]. |
Immuno Process Associations | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
Physiological Functions | ||||||||
|
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
General Comments |
The role of RIPK3 as a critical regulator of programmed necrosis (necroptosis) is reviewed in [8]. |
1. Chen X, Zhuang C, Ren Y, Zhang H, Qin X, Hu L, Fu J, Miao Z, Chai Y, Liu ZG et al.. (2019) Identification of the Raf kinase inhibitor TAK-632 and its analogues as potent inhibitors of necroptosis by targeting RIPK1 and RIPK3. Br J Pharmacol, 176 (12): 2095-2108. [PMID:30825190]
2. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK. (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137 (6): 1112-23. [PMID:19524513]
3. Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P. (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity, 35 (6): 908-18. [PMID:22195746]
4. Hart AC, Abell L, Guo J, Mertzman ME, Padmanabha R, Macor JE, Chaudhry C, Lu H, O'Malley K, Shaw PJ et al.. (2019) Identification of RIPK3 Type II Inhibitors Using High-Throughput Mechanistic Studies in Hit Triage. ACS Med Chem Lett, Article ASAP. DOI: 10.1021/acsmedchemlett.9b00065
5. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137 (6): 1100-11. [PMID:19524512]
6. Kopalli SR, Kang TB, Koppula S. (2016) Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents. Expert Opin Ther Pat, 26 (11): 1239-1256. [PMID:27568917]
7. Li Y, Xiong Y, Zhang G, Zhang L, Yang W, Yang J, Huang L, Qiao Z, Miao Z, Lin G et al.. (2018) Identification of 5-(2,3-Dihydro-1 H-indol-5-yl)-7 H-pyrrolo[2,3- d]pyrimidin-4-amine Derivatives as a New Class of Receptor-Interacting Protein Kinase 1 (RIPK1) Inhibitors, Which Showed Potent Activity in a Tumor Metastasis Model. J Med Chem, 61 (24): 11398-11414. [PMID:30480444]
8. Moriwaki K, Chan FK. (2013) RIP3: a molecular switch for necrosis and inflammation. Genes Dev, 27 (15): 1640-9. [PMID:23913919]
9. Najafov A, Chen H, Yuan J. (2017) Necroptosis and Cancer. Trends Cancer, 3 (4): 294-301. [PMID:28451648]
10. Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL, Nogusa S, Shah S, Saleh D, Gough PJ, Bertin J et al.. (2015) Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep, 10 (11): 1850-60. [PMID:25801024]
11. Newton K. (2015) RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol, 25 (6): 347-53. [PMID:25662614]
12. Rickard JA, O'Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H et al.. (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell, 157 (5): 1175-88. [PMID:24813849]
13. Silke J, Rickard JA, Gerlic M. (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol, 16 (7): 689-97. [PMID:26086143]
14. Sun Y, Xu L, Shao H, Quan D, Mo Z, Wang J, Zhang W, Yu J, Zhuang C, Xu K. (2022) Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer's Disease. J Med Chem, 65 (21): 14957-14969. [PMID:36288088]
15. Vince JE, Silke J. (2016) The intersection of cell death and inflammasome activation. Cell Mol Life Sci, 73 (11-12): 2349-67. [PMID:27066895]
16. Wang T, Jin Y, Yang W, Zhang L, Jin X, Liu X, He Y, Li X. (2017) Necroptosis in cancer: An angel or a demon?. Tumour Biol, 39 (6): 1010428317711539. [PMID:28651499]
17. Xu CH, Wang JN, Suo XG, Ji ML, He XY, Chen X, Zhu S, He Y, Xie SS, Li C et al.. (2022) RIPK3 inhibitor-AZD5423 alleviates acute kidney injury by inhibiting necroptosis and inflammation. Int Immunopharmacol, 112: 109262. [PMID:36166972]
18. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325 (5938): 332-6. [PMID:19498109]
19. Zhang H, Xu L, Qin X, Chen X, Cong H, Hu L, Chen L, Miao Z, Zhang W, Cai Z et al.. (2019) N-(7-Cyano-6-(4-fluoro-3-(2-(3-(trifluoromethyl)phenyl)acetamido)phenoxy)benzo[d]thiazol-2-yl)cyclopropanecarboxamide (TAK-632) Analogues as Novel Necroptosis Inhibitors by Targeting Receptor-Interacting Protein Kinase 3 (RIPK3): Synthesis, Structure-Activity Relationships, and in Vivo Efficacy. J Med Chem, 62 (14): 6665-6681. [PMID:31095385]
Receptor interacting protein kinase (RIPK) family: receptor interacting serine/threonine kinase 3. Last modified on 20/11/2023. Accessed on 11/10/2024. IUPHAR/BPS Guide to PHARMACOLOGY, https://www.guidetomalariapharmacology.org/GRAC/ObjectDisplayForward?objectId=2191.