halothane   Click here for help

GtoPdb Ligand ID: 2401

Synonyms: Fluothane®
Approved drug
halothane is an approved drug (FDA (1958))
Compound class: Synthetic organic
Comment: Halothane is a volatile anaesthetic which causes rapid anaesthesia, but requires use of additional nitrous oxide and/or neuromuscular blocking agents to be fully effective.
Click here for help
2D Structure
Click here for help
Click here for structure editor
Physico-chemical Properties
Click here for help
Hydrogen bond acceptors 0
Hydrogen bond donors 0
Rotatable bonds 1
Topological polar surface area 0
Molecular weight 195.89
XLogP 3.16
No. Lipinski's rules broken 0
Click here for help
Canonical SMILES ClC(C(F)(F)F)Br
Isomeric SMILES ClC(C(F)(F)F)Br
InChI InChI=1S/C2HBrClF3/c3-1(4)2(5,6)7/h1H
1. Blin S, Chatelain FC, Feliciangeli S, Kang D, Lesage F, Bichet D. (2014)
Tandem pore domain halothane-inhibited K+ channel subunits THIK1 and THIK2 assemble and form active channels.
J Biol Chem, 289 (41): 28202-12. [PMID:25148687]
2. Gray AT, Zhao BB, Kindler CH, Winegar BD, Mazurek MJ, Xu J, Chavez RA, Forsayeth JR, Yost CS. (2000)
Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5.
Anesthesiology, 92 (6): 1722-30. [PMID:10839924]
3. Kelemen B, Lisztes E, Vladár A, Hanyicska M, Almássy J, Oláh A, Szöllősi AG, Pénzes Z, Posta J, Voets T et al.. (2020)
Volatile anaesthetics inhibit the thermosensitive nociceptor ion channel transient receptor potential melastatin 3 (TRPM3).
Biochem Pharmacol, 174: 113826. [PMID:31987857]
4. Kulkarni RS, Zorn LJ, Anantharam V, Bayley H, Treistman SN. (1996)
Inhibitory effects of ketamine and halothane on recombinant potassium channels from mammalian brain.
Anesthesiology, 84 (4): 900-9. [PMID:8638845]
5. Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V, Talley EM, Chen X, Bayliss DA. (2010)
Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics.
J Neurosci, 30 (22): 7691-704. [PMID:20519544]
6. Lesage F, Terrenoire C, Romey G, Lazdunski M. (2000)
Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors.
J Biol Chem, 275 (37): 28398-405. [PMID:10880510]
7. Meadows HJ, Randall AD. (2001)
Functional characterisation of human TASK-3, an acid-sensitive two-pore domain potassium channel.
Neuropharmacology, 40 (4): 551-9. [PMID:11249964]
8. Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M. (1999)
Inhalational anesthetics activate two-pore-domain background K+ channels.
Nat Neurosci, 2 (5): 422-6. [PMID:10321245]
9. Patel AJ, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M. (1998)
A mammalian two pore domain mechano-gated S-like K+ channel.
EMBO J, 17 (15): 4283-90. [PMID:9687497]
10. Talley EM, Bayliss DA. (2002)
Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action.
J Biol Chem, 277 (20): 17733-42. [PMID:11886861]
11. Washburn CP, Sirois JE, Talley EM, Guyenet PG, Bayliss DA. (2002)
Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance.
J Neurosci, 22 (4): 1256-65. [PMID:11850453]
12. Weigl LG, Schreibmayer W. (2001)
G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.
Mol Pharmacol, 60 (2): 282-9. [PMID:11455015]