Top ▲
Target id: 69
Nomenclature: CXCR2
Family: Chemokine receptors
This receptor has a proposed ligand; see the Latest Pairings page for more information.
Gene and Protein Information | ||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 360 | 2q35 | CXCR2 | C-X-C motif chemokine receptor 2 | 53,69 |
Mouse | 7 | 359 | 1 38.41 cM | Cxcr2 | C-X-C motif chemokine receptor 2 | 11 |
Rat | 7 | 359 | 9q33 | Cxcr2 | C-X-C motif chemokine receptor 2 | 23 |
Previous and Unofficial Names | |
IL8RB [53] | IL-8R2 | KC receptor [11] | CD182 | CXC-R2 | GRO/MGSA receptor | high affinity interleukin-8 receptor B | CD128 | Gpcr16 | chemokine (C-X-C motif) receptor 2 |
Database Links | |
Specialist databases | |
GPCRdb | cxcr2_human (Hs), cxcr2_mouse (Mm), cxcr2_rat (Rn) |
Other databases | |
Alphafold | P25025 (Hs), P35343 (Mm), P35407 (Rn) |
ChEMBL Target | CHEMBL2434 (Hs), CHEMBL4105830 (Mm) |
Ensembl Gene | ENSG00000180871 (Hs), ENSMUSG00000026180 (Mm), ENSRNOG00000063618 (Rn) |
Entrez Gene | 3579 (Hs), 12765 (Mm), 29385 (Rn) |
Human Protein Atlas | ENSG00000180871 (Hs) |
KEGG Gene | hsa:3579 (Hs), mmu:12765 (Mm), rno:29385 (Rn) |
OMIM | 146928 (Hs) |
Pharos | P25025 (Hs) |
RefSeq Nucleotide | NM_001557 (Hs), NM_009909 (Mm), NM_017183 (Rn) |
RefSeq Protein | NP_001548 (Hs), NP_034039 (Mm), NP_058879 (Rn) |
UniProtKB | P25025 (Hs), P35343 (Mm), P35407 (Rn) |
Wikipedia | CXCR2 (Hs) |
Natural/Endogenous Ligands |
CXCL1 {Sp: Human} |
CXCL6 {Sp: Human} |
CXCL8 {Sp: Human} |
CXCL2 {Sp: Human} |
CXCL3 {Sp: Human} |
CXCL5 {Sp: Human} |
CXCL7 {Sp: Human} |
CXCL1 {Sp: Mouse} |
CXCL2 {Sp: Mouse} |
CXCL3 {Sp: Mouse} |
CXCL5 {Sp: Mouse} |
CXCL1 {Sp: Rat} |
CXCL2 {Sp: Rat} |
CXCL3 {Sp: Rat} |
CXCL5 {Sp: Rat} |
Comments: macrophage derived lectin is a proposed ligand, single publication |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific agonist tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils, but binding affinity was not determined [98]. |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Allosteric Modulators | |||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Allosteric Modulator Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||
The mechanism of inhibition exhibited by reparixin is not fully resolved. The compound may act as a negative allosteric modulator, rather than an antagonist. Ladarixin (DF2156A, a reparixin derivative; Pubchem CID 11372270) is a dual CXCR1/2 non‐competitive allosteric modulator that inhibits CXCL1- and CXCL8-induced leukocyte chemotaxis [9]. It is compound 57 in Moriconi et al.'s 2007 J Med Chem paper [67]. DF2156A reached Phase 2 clinical evaluation in patients with the autoimmune pruritic skin disease bullous pemphigoid, but the study was terminated due to limited efficacy in the first tranche of enrolled participants (see NCT01571895). Ladarixin has since been reported to show potential therapeutic utility in the treatment of experimental cutaneous and uveal melanomas [49], and is being studied as a therapeutic option in newly diagnosed type I diabetes patients (see NCT02814838). DF2755A and DF2726 are non-competitive negative allosteric modulators of CXCL8 signalling via CXCR1 and CXCR2 [12,56]. |
Other Binding Ligands | |||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | Click column headers to sort | ||||||||||||||||||||||||||||||||||||||||||||||||||
|
Immunopharmacology Comments |
CXCR2 is one of more than 20 distinct chemokine receptors expressed in human leukocytes. Chemokines primarily act to promote leukocyte chemotaxis to sites of inflammation. CXCR2 is discussed in relation to immuno-oncology in [2]. From a therapeutic perspective, small molecule CXCR2 antagonists (e.g., AZD5069, danirixin) have been developed to selectively block neutrophilic inflammatory pathways in chronic inflammatory lung diseases. In addition to blocking excessive neutrophil recruitment in blood [73] and to the lungs of more severe asthma patients [88], AZD5069 can also act as a NET-stabilizing agent to disrupt NET formation in sputum neutrophils derived from patients with COPD [77,87]. |
Immuno Process Associations | ||
|
||
|
||
|
||
|
||
|
||
|
Primary Transduction Mechanisms | |
Transducer | Effector/Response |
Gi/Go family |
Adenylyl cyclase inhibition Calcium channel |
Comments: The βγ subunit of the Gi G protein is necessary for chemotaxis [70] and calcium mobilisation [34]. | |
References: 27,34,70 |
Secondary Transduction Mechanisms | |
Transducer | Effector/Response |
Calcium channel Other - See Comments |
|
Comments: Additional information on signaling pathways can be found in [89]. Agonists at high concentrations induce phosphorylation of CXCR2, leading to homologous desensitization, receptor internalization and partial degradation [7,18,26,68]. CXCR2 couples mainly to G protein-coupled receptor kinase 6 (GRK6) to negatively regulate receptor sensitization and trafficking [78]. | |
References: 46 |
Tissue Distribution | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
Tissue Distribution Comments | ||||||||
The expression of CXCR1 and CXCR2 on NK cells is under debate. CXCR2 is also expressed by many non-hematopoietic cells, including endothelial cells and tumor cells. |
Expression Datasets | |
|
Functional Assays | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Physiological Functions | ||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
Physiological Functions Comments | ||||||||
CXCR2 is implicated in ischemic injury, trauma and multiple sclerosis [81], and in NET formation [87]. |
Physiological Consequences of Altering Gene Expression | ||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Gene Expression and Pathophysiology Comments | |
In patients with type 1 diabetes the CXCR1/2 negative allosteric modulator reparixin improved outcome in a phase 2 randomized, open-label pilot study with a single infusion of allogeneic islets [17]. Administration of reparixin in on-pump coronary artery bypass grafting (CABG) patients appears to be feasible and safe. It concurrently attenuated postoperative granulocytosis in peripheral blood [76]. In many malignancies, elevated CXCR2 activity has been connected to increased tumor growth and metastasis. |
Biologically Significant Variants | ||||||||||||||
|
||||||||||||||
|
||||||||||||||
|
||||||||||||||
|
||||||||||||||
|
1. Abonia JP, Austen KF, Rollins BJ, Joshi SK, Flavell RA, Kuziel WA, Koni PA, Gurish MF. (2005) Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood, 105 (11): 4308-13. [PMID:15705791]
2. Adams JL, Smothers J, Srinivasan R, Hoos A. (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov, 14 (9): 603-22. [PMID:26228631]
3. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM. (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol, 165 (9): 5269-77. [PMID:11046061]
4. Ahuja SK, Murphy PM. (1996) The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem, 271 (34): 20545-50. [PMID:8702798]
5. Auer PL, Teumer A, Schick U, O'Shaughnessy A, Lo KS, Chami N, Carlson C, de Denus S, Dubé MP, Haessler J et al.. (2014) Rare and low-frequency coding variants in CXCR2 and other genes are associated with hematological traits. Nat Genet, 46 (6): 629-34. [PMID:24777453]
6. Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD et al.. (2014) International Union of Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev, 66 (1): 1-79. [PMID:24218476]
7. Ben-Baruch A, Grimm M, Bengali K, Evans GA, Chertov O, Wang JM, Howard OM, Mukaida N, Matsushima K, Oppenheim JJ. (1997) The differential ability of IL-8 and neutrophil-activating peptide-2 to induce attenuation of chemotaxis is mediated by their divergent capabilities to phosphorylate CXCR2 (IL-8 receptor B). J Immunol, 158 (12): 5927-33. [PMID:9190946]
8. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E et al.. (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci USA, 101 (32): 11791-6. [PMID:15282370]
9. Bertini R, Barcelos LS, Beccari AR, Cavalieri B, Moriconi A, Bizzarri C, Di Benedetto P, Di Giacinto C, Gloaguen I, Galliera E et al.. (2012) Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor. Br J Pharmacol, 165 (2): 436-54. [PMID:21718305]
10. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA. (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest, 101 (2): 353-63. [PMID:9435307]
11. Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski Jr LF, Conklyn MJ, Breslow R, Showell HJ, Gerard C. (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem, 269 (47): 29355-8. [PMID:7961909]
12. Brandolini L, Castelli V, Aramini A, Giorgio C, Bianchini G, Russo R, De Caro C, d'Angelo M, Catanesi M, Benedetti E et al.. (2019) DF2726A, a new IL-8 signalling inhibitor, is able to counteract chemotherapy-induced neuropathic pain. Sci Rep, 9 (1): 11729. [PMID:31409858]
13. Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW. (1996) Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med, 184 (5): 1825-32. [PMID:8920870]
14. Buanne P, Di Carlo E, Caputi L, Brandolini L, Mosca M, Cattani F, Pellegrini L, Biordi L, Coletti G, Sorrentino C et al.. (2007) Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice. J Leukoc Biol, 82 (5): 1239-46. [PMID:17656654]
15. Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, Wood WI, Moore MW. (1994) Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science, 265 (5172): 682-4. [PMID:8036519]
16. Chuntharapai A, Lee J, Hébert CA, Kim KJ. (1994) Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol, 153 (12): 5682-8. [PMID:7527448]
17. Citro A, Cantarelli E, Maffi P, Nano R, Melzi R, Mercalli A, Dugnani E, Sordi V, Magistretti P, Daffonchio L et al.. (2012) CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. J Clin Invest, 122 (10): 3647-51. [PMID:22996693]
18. Cohen-Hillel E, Yron I, Meshel T, Soria G, Attal H, Ben-Baruch A. (2006) CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine, 33 (1): 1-16. [PMID:16406804]
19. Del Rio L, Bennouna S, Salinas J, Denkers EY. (2001) CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J Immunol, 167 (11): 6503-9. [PMID:11714818]
20. Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A. (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol, 115 (2): 234-44. [PMID:10951241]
21. Diana J, Lehuen A. (2014) Macrophages and β-cells are responsible for CXCR2-mediated neutrophil infiltration of the pancreas during autoimmune diabetes. EMBO Mol Med, 6 (8): 1090-104. [PMID:24968718]
22. Doroshenko T, Chaly Y, Savitskiy V, Maslakova O, Portyanko A, Gorudko I, Voitenok NN. (2002) Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2. Blood, 100 (7): 2668-71. [PMID:12239185]
23. Dunstan CA, Salafranca MN, Adhikari S, Xia Y, Feng L, Harrison JK. (1996) Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem, 271: 32770-32776. [PMID:8955112]
24. Dwyer MP, Yu Y, Chao J, Aki C, Chao J, Biju P, Girijavallabhan V, Rindgen D, Bond R, Mayer-Ezel R et al.. (2006) Discovery of 2-hydroxy-N,N-dimethyl-3-{2-[[(R)-1-(5- methylfuran-2-yl)propyl]amino]-3,4-dioxocyclobut-1-enylamino}benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist. J Med Chem, 49 (26): 7603-6. [PMID:17181143]
25. Farkas L, Hahn MC, Schmoczer M, Jentsch N, Krätzel K, Pfeifer M, Schulz C. (2005) Expression of CXC chemokine receptors 1 and 2 in human bronchial epithelial cells. Chest, 128 (5): 3724-34. [PMID:16304340]
26. Feniger-Barish R, Ran M, Zaslaver A, Ben-Baruch A. (1999) Differential modes of regulation of cxc chemokine-induced internalization and recycling of human CXCR1 and CXCR2. Cytokine, 11 (12): 996-1009. [PMID:10623425]
27. Feniger-Barish R, Yron I, Meshel T, Matityahu E, Ben-Baruch A. (2003) IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry, 42: 2874-2886. [PMID:12627953]
28. Frendéus B, Godaly G, Hang L, Karpman D, Lundstedt AC, Svanborg C. (2000) Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med, 192 (6): 881-90. [PMID:10993918]
29. Geissmann F, Jung S, Littman DR. (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity, 19 (1): 71-82. [PMID:12871640]
30. Giagulli C, Magiera AK, Bugatti A, Caccuri F, Marsico S, Rusnati M, Vermi W, Fiorentini S, Caruso A. (2012) HIV-1 matrix protein p17 binds to the IL-8 receptor CXCR1 and shows IL-8-like chemokine activity on monocytes through Rho/ROCK activation. Blood, 119 (10): 2274-83. [PMID:22262769]
31. Godaly G, Hang L, Frendéus B, Svanborg C. (2000) Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol, 165 (9): 5287-94. [PMID:11046063]
32. Gonçalves AS, Appelberg R. (2002) The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol, 55 (6): 585-91. [PMID:12028561]
33. Hale SJ, Hale AB, Zhang Y, Sweeney D, Fisher N, van der Garde M, Grabowska R, Pepperell E, Channon K, Martin-Rendon E et al.. (2015) CXCR2 modulates bone marrow vascular repair and haematopoietic recovery post-transplant. Br J Haematol, 169 (4): 552-64. [PMID:25757087]
34. Hall DA, Beresford IJ, Browning C, Giles H. (1999) Signalling by CXC-chemokine receptors 1 and 2 expressed in CHO cells: a comparison of calcium mobilization, inhibition of adenylyl cyclase and stimulation of GTPgammaS binding induced by IL-8 and GROalpha. Br J Pharmacol, 126 (3): 810-8. [PMID:10188995]
35. Hall LR, Diaconu E, Patel R, Pearlman E. (2001) CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness). J Immunol, 166 (6): 4035-41. [PMID:11238651]
36. Hang L, Frendéus B, Godaly G, Svanborg C. (2000) Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis, 182: 1738-1748. [PMID:11069247]
37. Herlea-Pana O, Yao L, Heuser-Baker J, Wang Q, Wang Q, Georgescu C, Zou MH, Barlic-Dicen J. (2015) Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression. Cardiovasc Res, 106 (2): 324-37. [PMID:25765938]
38. Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J et al.. (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol, 158 (6): 2882-90. [PMID:9058825]
39. Hou Y, Wu Y, Farooq SM, Guan X, Wang S, Liu Y, Oblak JJ, Holcomb J, Jiang Y, Strieter RM et al.. (2015) A critical role of CXCR2 PDZ-mediated interactions in endothelial progenitor cell homing and angiogenesis. Stem Cell Res, 14 (2): 133-43. [PMID:25622052]
40. Hsieh CY, Chen CL, Lin YS, Yeh TM, Tsai TT, Hong MY, Lin CF. (2014) Macrophage migration inhibitory factor triggers chemotaxis of CD74+CXCR2+ NKT cells in chemically induced IFN-γ-mediated skin inflammation. J Immunol, 193 (7): 3693-703. [PMID:25172501]
41. Huber ME, Wurnig S, Toy L, Weiler C, Merten N, Kostenis E, Hansen FK, Schiedel M. (2023) Fluorescent Ligands Enable Target Engagement Studies for the Intracellular Allosteric Binding Site of the Chemokine Receptor CXCR2. J Med Chem, 66 (14): 9916-9933. [PMID:37463496]
42. Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K, Kitaura M, Morita Y, Yoshie O, Yamamoto K, Hirai K. (2001) Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol, 70: 113-120. [PMID:11435493]
43. Javor J, Bucova M, Cervenova O, Kralinsky K, Sadova E, Suchankova M, Liptakova A. (2012) Genetic variations of interleukin-8, CXCR1 and CXCR2 genes and risk of acute pyelonephritis in children. Int J Immunogenet, 39 (4): 338-45. [PMID:22325052]
44. Johnston RA, Mizgerd JP, Shore SA. (2005) CXCR2 is essential for maximal neutrophil recruitment and methacholine responsiveness after ozone exposure. Am J Physiol Lung Cell Mol Physiol, 288 (1): L61-7. [PMID:15361358]
45. Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1997) Chemokine antagonists that discriminate between interleukin-8 receptors. Selective blockers of CXCR2. J Biol Chem, 272 (26): 16166-9. [PMID:9195914]
46. Jones SA, Wolf M, Qin S, Mackay CR, Baggiolini M. (1996) Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc Natl Acad Sci USA, 93 (13): 6682-6. [PMID:8692878]
47. Jurcevic S, Humfrey C, Uddin M, Warrington S, Larsson B, Keen C. (2015) The effect of a selective CXCR2 antagonist (AZD5069) on human blood neutrophil count and innate immune functions. Br J Clin Pharmacol, 80 (6): 1324-36. [PMID:26182832]
48. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN. (2013) CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell, 24 (5): 631-44. [PMID:24229710]
49. Kemp DM, Pidich A, Larijani M, Jonas R, Lash E, Sato T, Terai M, De Pizzol M, Allegretti M, Igoucheva O et al.. (2017) Ladarixin, a dual CXCR1/2 inhibitor, attenuates experimental melanomas harboring different molecular defects by affecting malignant cells and tumor microenvironment. Oncotarget, 8 (9): 14428-14442. [PMID:28129639]
50. Kielian T, Barry B, Hickey WF. (2001) CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol, 166 (7): 4634-43. [PMID:11254722]
51. Kormann MS, Hector A, Marcos V, Mays LE, Kappler M, Illig T, Klopp N, Zeilinger S, Carevic M, Rieber N et al.. (2012) CXCR1 and CXCR2 haplotypes synergistically modulate cystic fibrosis lung disease. Eur Respir J, 39 (6): 1385-90. [PMID:22088968]
52. Köhler A, De Filippo K, Hasenberg M, van den Brandt C, Nye E, Hosking MP, Lane TE, Männ L, Ransohoff RM, Hauser AE et al.. (2011) G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood, 117 (16): 4349-57. [PMID:21224471]
53. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI. (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem, 267 (23): 16283-7. [PMID:1379593]
54. Li A, Dubey S, Varney ML, Singh RK. (2002) Interleukin-8-induced proliferation, survival, and MMP production in CXCR1 and CXCR2 expressing human umbilical vein endothelial cells. Microvasc Res, 64 (3): 476-81. [PMID:12453441]
55. Li A, Varney ML, Valasek J, Godfrey M, Dave BJ, Singh RK. (2005) Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis, 8 (1): 63-71. [PMID:16132619]
56. Lopes AH, Brandolini L, Aramini A, Bianchini G, Silva RL, Zaperlon AC, Verri Jr WA, Alves-Filho JC, Cunha FQ, Teixeira MM et al.. (2016) DF2755A, a novel non-competitive allosteric inhibitor of CXCR1/2, reduces inflammatory and post-operative pain. Pharmacol Res, 103: 69-79. [PMID:26592483]
57. Ludwig A, Ehlert JE, Flad HD, Brandt E. (2000) Identification of distinct surface-expressed and intracellular CXC-chemokine receptor 2 glycoforms in neutrophils: N-glycosylation is essential for maintenance of receptor surface expression. J Immunol, 165 (2): 1044-52. [PMID:10878382]
58. Lüttichau HR. (2010) The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. J Biol Chem, 285 (12): 9137-46. [PMID:20044480]
59. Maeda DY, Peck AM, Schuler AD, Quinn MT, Kirpotina LN, Wicomb WN, Fan GH, Zebala JA. (2014) Discovery of 2-[5-(4-Fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic Acid (SX-517): Noncompetitive Boronic Acid Antagonist of CXCR1 and CXCR2. J Med Chem, 57 (20): 8378-97. [PMID:25254640]
60. Matheson MC, Ellis JA, Raven J, Walters EH, Abramson MJ. (2006) Association of IL8, CXCR2 and TNF-alpha polymorphisms and airway disease. J Hum Genet, 51 (3): 196-203. [PMID:16429233]
61. Merz D, Liu R, Johnson K, Terkeltaub R. (2003) IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol, 171 (8): 4406-15. [PMID:14530367]
62. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ. (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA, 95 (24): 14500-5. [PMID:9826729]
63. Mihara K, Smit MJ, Krajnc-Franken M, Gossen J, Rooseboom M, Dokter W. (2005) Human CXCR2 (hCXCR2) takes over functionalities of its murine homolog in hCXCR2 knockin mice. Eur J Immunol, 35 (9): 2573-82. [PMID:16094689]
64. Milatovic S, Nanney LB, Yu Y, White JR, Richmond A. (2003) Impaired healing of nitrogen mustard wounds in CXCR2 null mice. Wound Repair Regen, 11 (3): 213-9. [PMID:12753603]
65. Miller AL, Strieter RM, Gruber AD, Ho SB, Lukacs NW. (2003) CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction. J Immunol, 170 (6): 3348-56. [PMID:12626595]
66. Miller BE, Mistry S, Smart K, Connolly P, Carpenter DC, Cooray H, Bloomer JC, Tal-Singer R, Lazaar AL. (2015) The pharmacokinetics and pharmacodynamics of danirixin (GSK1325756) - a selective CXCR2 antagonist - in healthy adult subjects. BMC Pharmacol Toxicol, 16 (1): 18. [PMID:26092545]
67. Moriconi A, Cesta MC, Cervellera MN, Aramini A, Coniglio S, Colagioia S, Beccari AR, Bizzarri C, Cavicchia MR, Locati M et al.. (2007) Design of noncompetitive interleukin-8 inhibitors acting on CXCR1 and CXCR2. J Med Chem, 50 (17): 3984-4002. [PMID:17665889]
68. Mueller SG, White JR, Schraw WP, Lam V, Richmond A. (1997) Ligand-induced desensitization of the human CXC chemokine receptor-2 is modulated by multiple serine residues in the carboxyl-terminal domain of the receptor. J Biol Chem, 272 (13): 8207-14. [PMID:9079638]
69. Murphy PM, Tiffany HL. (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science, 253 (5025): 1280-3. [PMID:1891716]
70. Neptune ER, Bourne HR. (1997) Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci USA, 94 (26): 14489-94. [PMID:9405640]
71. Nicholls DJ, Wiley K, Dainty I, MacIntosh F, Phillips C, Gaw A, Mårdh CK. (2015) Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist. J Pharmacol Exp Ther, 353 (2): 340-50. [PMID:25736418]
72. Nilsson G, Mikovits JA, Metcalfe DD, Taub DD. (1999) Mast cell migratory response to interleukin-8 is mediated through interaction with chemokine receptor CXCR2/Interleukin-8RB. Blood, 93 (9): 2791-7. [PMID:10216072]
73. O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M, Larsson B, Cullberg M, Nair P. (2016) Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med, 4 (10): 797-806. [PMID:27574788]
74. Ochensberger B, Tassera L, Bifrare D, Rihs S, Dahinden CA. (1999) Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotactic agonists. Eur J Immunol, 29 (1): 11-22. [PMID:9933081]
75. Olszyna DP, Florquin S, Sewnath M, Branger J, Speelman P, van Deventer SJ, Strieter RM, van der Poll T. (2001) CXC chemokine receptor 2 contributes to host defense in murine urinary tract infection. J Infect Dis, 184 (3): 301-7. [PMID:11443555]
76. Opfermann P, Derhaschnig U, Felli A, Wenisch J, Santer D, Zuckermann A, Dworschak M, Jilma B, Steinlechner B. (2015) A pilot study on reparixin, a CXCR1/2 antagonist, to assess safety and efficacy in attenuating ischaemia-reperfusion injury and inflammation after on-pump coronary artery bypass graft surgery. Clin Exp Immunol, 180 (1): 131-42. [PMID:25402332]
77. Pedersen F, Waschki B, Marwitz S, Goldmann T, Kirsten A, Malmgren A, Rabe KF, Uddin M, Watz H. (2018) Neutrophil extracellular trap formation is regulated by CXCR2 in COPD neutrophils. Eur Respir J, 51 (4). [PMID:29449427]
78. Raghuwanshi SK, Su Y, Singh V, Haynes K, Richmond A, Richardson RM. (2012) The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. J Immunol, 189 (6): 2824-32. [PMID:22869904]
79. Richardson RM, Marjoram RJ, Barak LS, Snyderman R. (2003) Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J Immunol, 170: 2904-2911. [PMID:12626541]
80. Ryan BM, Robles AI, McClary AC, Haznadar M, Bowman ED, Pine SR, Brown D, Khan M, Shiraishi K, Kohno T et al.. (2015) Identification of a functional SNP in the 3'UTR of CXCR2 that is associated with reduced risk of lung cancer. Cancer Res, 75 (3): 566-75. [PMID:25480945]
81. Semple BD, Kossmann T, Morganti-Kossmann MC. (2010) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab, 30 (3): 459-73. [PMID:19904283]
82. Steele CW, Karim SA, Foth M, Rishi L, Leach JD, Porter RJ, Nixon C, Jeffry Evans TR, Carter CR, Nibbs RJ et al.. (2015) CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. J Pathol, 237 (1): 85-97. [PMID:25950520]
83. Stock AT, Smith JM, Carbone FR. (2014) Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection. J Exp Med, 211 (5): 751-9. [PMID:24752295]
84. Tancevski I, Nairz M, Duwensee K, Auer K, Schroll A, Heim C, Feistritzer C, Hoefer J, Gerner RR, Moschen AR et al.. (2014) Fibrates ameliorate the course of bacterial sepsis by promoting neutrophil recruitment via CXCR2. EMBO Mol Med, 6 (6): 810-20. [PMID:24755316]
85. Tarzami ST, Miao W, Mani K, Lopez L, Factor SM, Berman JW, Kitsis RN. (2003) Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection. Circulation, 108: 2387-2392. [PMID:14568904]
86. Uddin M, Betts C, Robinson I, Malmgren A, Humfrey C. (2017) The chemokine CXCR2 antagonist (AZD5069) preserves neutrophil-mediated host immunity in non-human primates. Haematologica, 102 (2): e65-e68. [PMID:27742769]
87. Uddin M, Watz H, Malmgren A, Pedersen F. (2019) NETopathic Inflammation in Chronic Obstructive Pulmonary Disease and Severe Asthma. Front Immunol, 10: 47. [PMID:30804927]
88. Watz H, Uddin M, Pedersen F, Kirsten A, Goldmann T, Stellmacher F, Groth E, Larsson B, Böttcher G, Malmgren A et al.. (2017) Effects of the CXCR2 antagonist AZD5069 on lung neutrophil recruitment in asthma. Pulm Pharmacol Ther, 45: 121-123. [PMID:28549850]
89. Waugh DJ, Wilson C. (2008) The interleukin-8 pathway in cancer. Clin Cancer Res, 14 (21): 6735-41. [PMID:18980965]
90. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE et al.. (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem, 273 (17): 10095-8. [PMID:9553055]
91. Wilson S, Wilkinson G, Milligan G. (2005) The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem, 280 (31): 28663-74. [PMID:15946947]
92. Wolf M, Delgado MB, Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1998) Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. Eur J Immunol, 28 (1): 164-70. [PMID:9485196]
93. Wu F, Zhao Y, Jiao T, Shi D, Zhu X, Zhang M, Shi M, Zhou H. (2015) CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation. J Neuroinflammation, 12: 98. [PMID:25990934]
94. Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay CR, Qin S. (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem, 271 (49): 31202-9. [PMID:8940121]
95. Wuyts A, Proost P, Lenaerts JP, Ben-Baruch A, Van Damme J, Wang JM. (1998) Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur J Biochem, 255 (1): 67-73. [PMID:9692902]
96. Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, Oppenheim JJ, Proost P, Van Damme J. (1997) Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties. Biochemistry, 36 (9): 2716-23. [PMID:9054580]
97. Zernecke A, Weber KS, Erwig LP, Kluth DC, Schröppel B, Rees AJ, Weber C. (2001) Combinatorial model of chemokine involvement in glomerular monocyte recruitment: role of CXC chemokine receptor 2 in infiltration during nephrotoxic nephritis. J Immunol, 166 (9): 5755-62. [PMID:11313419]
98. Zhang Z, Cherryholmes G, Chang F, Rose DM, Schraufstatter I, Shively JE. (2009) Evidence that cathelicidin peptide LL-37 may act as a functional ligand for CXCR2 on human neutrophils. Eur J Immunol, 39 (11): 3181-94. [PMID:19750480]