Top ▲
Gene and Protein Information | |||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 6 | 1 | 988 | 14q23.2 | KCNH5 | potassium voltage-gated channel subfamily H member 5 | |
Mouse | 6 | 1 | 988 | 12 C3 | Kcnh5 | potassium voltage-gated channel, subfamily H (eag-related), member 5 | |
Rat | 6 | 1 | 988 | 6q24 | Kcnh5 | potassium voltage-gated channel subfamily H member 5 |
Database Links | |
Alphafold | Q8NCM2 (Hs), Q920E3 (Mm), Q9EPI9 (Rn) |
CATH/Gene3D | 2.60.120.10 |
Ensembl Gene | ENSG00000140015 (Hs), ENSMUSG00000034402 (Mm), ENSRNOG00000009542 (Rn) |
Entrez Gene | 27133 (Hs), 238271 (Mm), 171146 (Rn) |
Human Protein Atlas | ENSG00000140015 (Hs) |
KEGG Gene | hsa:27133 (Hs), mmu:238271 (Mm), rno:171146 (Rn) |
OMIM | 605716 (Hs) |
Pharos | Q8NCM2 (Hs) |
RefSeq Nucleotide | NM_172375 (Hs), NM_139318 (Hs), NM_172805 (Mm), NM_133610 (Rn) |
RefSeq Protein | NP_758963 (Hs), NP_647479 (Hs), NP_766393 (Mm), NP_598294 (Rn) |
UniProtKB | Q8NCM2 (Hs), Q920E3 (Mm), Q9EPI9 (Rn) |
Wikipedia | KCNH5 (Hs) |
Associated Proteins | ||||||||||||||||||||
|
|
|
Ion Selectivity and Conductance | ||||||
|
Voltage Dependence | ||||||||||||||||
|
||||||||||||||||
|
Download all structure-activity data for this target as a CSV file
Channel Blockers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Channel Blocker Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Intracellular Calcium (Cai2+): At 20ηM Cai2+ current declined ~ 30% after 90 seconds. At 400 ηM Cai2+, only 10% of residual current left after 90 seconds [7] Terfenadine pIC50 > 5 [5] |
Tissue Distribution | ||||||||
|
||||||||
|
Phenotypes, Alleles and Disease Models | Mouse data from MGI | ||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology | ||||||||||||||||||||||||||
|
||||||||||||||||||||||||||
|
Biologically Significant Variants | ||||||||||||
|
||||||||||||
|
||||||||||||
Biologically Significant Variant Comments | ||||||||||||
The functional significance of isoform-2 and -3 variants is yet to be established. There are two promoters capable of driving KCNH5 transcription. The upstream promoter appears to be active in placental tissues and some melanomas [8]. |
General Comments |
This channel has the following features:
The tetramerizing coiled-coil (TCC) domain at the C-terminal end of Kv10 and Kv11 confers specificity for multimer formation, allowing Kv10.1 / Kv10.2 heteromerization, and Kv11.1 homomerization, but not Kv10.x / Kv11.1 heteromerization [4]. This C-terminal TCC domain has been identified in many other channels, and mutations of the TCC have been found to be linked to genetic channelopathies. |
1. Bracey K, Ju M, Tian C, Stevens L, Wray D. (2008) Tubulin as a binding partner of the heag2 voltage-gated potassium channel. J Membr Biol, 222 (3): 115-25. [PMID:18458804]
2. Gessner G, Zacharias M, Bechstedt S, Schönherr R, Heinemann SH. (2004) Molecular determinants for high-affinity block of human EAG potassium channels by antiarrhythmic agents. Mol Pharmacol, 65 (5): 1120-9. [PMID:15102940]
3. Huang X, He Y, Dubuc AM, Hashizume R, Zhang W, Reimand J, Yang H, Wang TA, Stehbens SJ, Younger S et al.. (2015) EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nat Neurosci, 18 (9): 1236-46. [PMID:26258683]
4. Jenke M, Sánchez A, Monje F, Stühmer W, Weseloh RM, Pardo LA. (2003) C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J, 22 (3): 395-403. [PMID:12554641]
5. Ju M, Wray D. (2002) Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett, 524 (1-3): 204-10. [PMID:12135768]
6. Ludwig J, Owen D, Pongs O. (1997) Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-à-go-go potassium channel. EMBO J, 16 (21): 6337-45. [PMID:9400421]
7. Ludwig J, Weseloh R, Karschin C, Liu Q, Netzer R, Engeland B, Stansfeld C, Pongs O. (2000) Cloning and functional expression of rat eag2, a new member of the ether-à-go-go family of potassium channels and comparison of its distribution with that of eag1. Mol Cell Neurosci, 16 (1): 59-70. [PMID:10882483]
8. Macaulay EC, Roberts HE, Cheng X, Jeffs AR, Baguley BC, Morison IM. (2014) Retrotransposon hypomethylation in melanoma and expression of a placenta-specific gene. PLoS ONE, 9 (4): e95840. [PMID:24759919]
9. Saganich MJ, Vega-Saenz de Miera E, Nadal MS, Baker H, Coetzee WA, Rudy B. (1999) Cloning of components of a novel subthreshold-activating K(+) channel with a unique pattern of expression in the cerebral cortex. J Neurosci, 19 (24): 10789-802. [PMID:10594062]
10. Schönherr R, Gessner G, Löber K, Heinemann SH. (2002) Functional distinction of human EAG1 and EAG2 potassium channels. FEBS Lett, 514 (2-3): 204-8. [PMID:11943152]
11. Veeramah KR, Johnstone L, Karafet TM, Wolf D, Sprissler R, Salogiannis J, Barth-Maron A, Greenberg ME, Stuhlmann T, Weinert S et al.. (2013) Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia, 54 (7): 1270-81. [PMID:23647072]
12. Yang Y, Vasylyev DV, Dib-Hajj F, Veeramah KR, Hammer MF, Dib-Hajj SD, Waxman SG. (2013) Multistate structural modeling and voltage-clamp analysis of epilepsy/autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state. J Neurosci, 33 (42): 16586-93. [PMID:24133262]