Top ▲

MT2 receptor

Click here for help

Target id: 288

Nomenclature: MT2 receptor

Family: Melatonin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 362 11q14.3 MTNR1B melatonin receptor 1B 54-55
Mouse 7 364 9 A2 Mtnr1b melatonin receptor 1B 32
Rat 7 364 8q12 Mtnr1b melatonin receptor 1B 3
Gene and Protein Information Comments
The ovine MT2 receptor has been shown to present 72% identity with the human receptor [14].
Previous and Unofficial Names Click here for help
mel1b receptor
Database Links Click here for help
Specialist databases
GPCRdb mtr1b_human (Hs), mtr1b_mouse (Mm)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  MT2 receptor crystalized in the inactive state in the presence of ramelteon.
PDB Id:  6ME9
Ligand:  ramelteon
Resolution:  3.3Å
Species:  Human
References:  33
Image of receptor 3D structure from RCSB PDB
Description:  MT2 receptor crystalized in the inactive state in the presence of 2-phenylmelatonin.
PDB Id:  6ME6
Resolution:  2.8Å
Species:  Human
References:  33
Associated Proteins Click here for help
Interacting Proteins
Name Effect References
MT1 receptor 5-6
GPR50 40
Natural/Endogenous Ligands Click here for help
melatonin

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]S70254 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Partial agonist 9.6 – 11.0 pKd 38-39
pKd 11.0 (Kd 1.1x10-11 M) [38-39]
pKd 9.6 [39]
[125I]SD6 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 10.2 – 10.2 pKd 38-39
pKd 10.2 (Kd 6.6x10-11 M) [39]
pKd 10.2 (Kd 6.6x10-11 M) [38-39]
[125I]DIV880 Small molecule or natural product Ligand is labelled Ligand is radioactive Hs Partial agonist 9.7 – 10.3 pKd 38-39
pKd 10.3 (Kd 5.5x10-11 M) [38-39]
pKd 9.7 (Kd 2.24x10-10 M) [39]
2-[125I]melatonin Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Full agonist 9.7 – 10.0 pKd 4,23
pKd 9.7 – 10.0 (Kd 1.86x10-10 – 1.07x10-10 M) [4,23]
[3H]melatonin Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Ligand has a PDB structure Hs Full agonist 9.0 – 9.6 pKd 11
pKd 9.0 – 9.6 (Kd 9.12x10-10 – 2.8x10-10 M) [11]
UCM1014 Small molecule or natural product Primary target of this compound Hs Full agonist 12.0 pKi 65
pKi 12.0 (Ki 1x10-12 M) [65]
isoamyl-agomelatine Small molecule or natural product Hs Partial agonist 11.0 pKi 27
pKi 11.0 [27]
CIFEA Small molecule or natural product Hs Full agonist 10.9 pKi 35
pKi 10.9 [35]
LY 156735 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 10.4 pKi 46
pKi 10.4 [46]
IIK7 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 10.3 pKi 28,67
pKi 10.3 (Ki 5x10-11 M) [28,67]
IIK7 Small molecule or natural product Mm Full agonist 10.3 pKi 7
pKi 10.3 (Ki 5.2x10-11 M) [7]
agomelatine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.9 – 10.5 pKi 4,9
pKi 9.9 – 10.5 [4,9]
tasimelteon Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Full agonist 10.2 pKi 52,71
pKi 10.2 (Ki 6.92x10-11 M) [52,71]
UCM 765 Small molecule or natural product Hs Full agonist 10.2 pKi 56
pKi 10.2 [56]
2-iodo-melatonin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.7 – 10.3 pKi 4,9,20,23
pKi 9.7 – 10.3 [4,9,20,23]
ramelteon Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 10.0 pKi 34,53
pKi 10.0 [34,53]
GR 196429 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.7 – 9.8 pKi 9,11
pKi 9.7 – 9.8 [9,11]
melatonin Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Immunopharmacology Ligand Hs Full agonist 9.4 – 9.8 pKi 4,20,23
pKi 9.4 – 9.8 [4,20,23]
6-Cl-MLT Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.4 – 9.8 pKi 4,9,20,23
pKi 9.4 – 9.8 [4,9,20,23]
S24014 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 9.6 pKi 4
pKi 9.6 [4]
5-methoxy-luzindole Small molecule or natural product Hs Partial agonist 9.6 pKi 23
pKi 9.6 (Ki 2.5x10-10 M) [23]
BOMPPA Small molecule or natural product Hs Full agonist 9.5 pKi 30
pKi 9.5 [30]
S24773 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 9.3 – 9.6 pKi 4
pKi 9.3 – 9.6 [4]
EFPPEA Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.4 pKi 36
pKi 9.4 [36]
UCM 793 Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.2 pKi 56
pKi 9.2 [56]
GR 128107 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 8.6 – 9.1 pKi 23,70
pKi 8.6 – 9.1 [23,70]
UCM1341 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.8 pKi 64
pKi 8.8 (Ki 1.7x10-9 M) [64]
6-hydroxymelatonin Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.3 – 8.8 pKi 11,20,23
pKi 8.3 – 8.8 [11,20,23]
S22153 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 8.1 – 8.2 pKi 4
pKi 8.1 – 8.2 [4]
S26284 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 6.8 – 7.2 pKi 4
pKi 6.8 – 7.2 [4]
ICOA-13 Small molecule or natural product Click here for species-specific activity table Ligand is labelled Hs Full agonist 5.5 pKi 29
pKi 5.5 (Ki 3.313x10-6 M) [29]
Description: For ERK1/2 activation.
UCSF4226 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.1 pEC50 66
pEC50 8.1 (EC50 7.08x10-9 M) [66]
UCSF3384 Small molecule or natural product Click here for species-specific activity table Hs Inverse agonist 6.2 pEC50 66
pEC50 6.2 (EC50 6.31x10-7 M) [66]
UCSF7447 Small molecule or natural product Click here for species-specific activity table Hs Inverse agonist 6.0 pEC50 66
pEC50 6.0 (EC50 1.024x10-6 M) [66]
View species-specific agonist tables
Agonist Comments
The partial agonists DIV880 and S70254 are the first reported selective ligands for the MT2 receptor subtype [39]. The partial antagonist GR 128107 has also been classed as an antagonist.
ICOA-13 is a full agonist for ERK1/2 activation at the MT2 receptor, but is a partial agonist for inhibition of cAMP production and β-arrestin2 recruitment [29].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
(hydroxymethylphenyl)agomelatine Small molecule or natural product Hs Antagonist 9.4 pKi 51
pKi 9.4 (Ki 3.6x10-10 M) [51]
K185 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.3 pKi 28,67
pKi 9.3 (Ki 5.1x10-10 M) [28,67]
4P-PDOT Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.8 – 9.4 pKi 4,23,25
pKi 8.8 – 9.4 (Ki 1.58x10-9 – 3.9x10-10 M) [4,23,25]
UCM 549 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.9 – 9.2 pKi 42,63
pKi 8.9 – 9.2 [42,63]
2-(indolin-1yl)-melatonin Small molecule or natural product Hs Antagonist 8.9 pKi 73
pKi 8.9 [73]
UCM 454 Small molecule or natural product Hs Antagonist 8.1 pKi 57
pKi 8.1 [57]
DH97 Small molecule or natural product Hs Antagonist 8.0 pKi 69
pKi 8.0 (Ki 1x10-8 M) [69]
UCM 724 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.0 pKi 42
pKi 8.0 [42]
luzindole Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 – 8.1 pKi 4,11,21,23,25
pKi 7.6 – 8.1 [4,11,21,23,25]
S20928 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 – 7.2 pKi 4
pKi 7.1 – 7.2 [4]
5-HEAT Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.1 pKi 49
pKi 7.1 [49]
S26131 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 6.8 – 7.0 pKi 4
pKi 6.8 – 7.0 [4]
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase inhibition
Phospholipase C stimulation
References:  24,31,43,45,54
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Other - See Comments
Comments:  Guanylate cyclase inhibition.
References:  50
Tissue Distribution Click here for help
Brown and white adipose tissue, PAZ6 adipocytes.
Species:  Human
Technique:  RT-PCR.
References:  12
Granulosa cells.
Species:  Human
Technique:  RT-PCR.
References:  48,62
Uveal melanocytes and melanoma cells.
Species:  Human
Technique:  RT-PCR.
References:  58
Hippocampus.
Species:  Human
Technique:  immunocytochemistry.
References:  60
Placental tissues and choriocarcinoma cell lines.
Species:  Human
Technique:  RT-PCR, Western blotting and confocal microscopy.
References:  37
Retina.
Species:  Human
Technique:  RT-PCR.
References:  54
Fetal kidney.
Species:  Human
Technique:  RT-PCR.
References:  19
Cerebellum.
Species:  Human
Technique:  in situ hybridisation.
References:  1
Brain: striatum.
Species:  Mouse
Technique:  Western blot and immunoprecipitation.
References:  8
Brain, lung.
Species:  Mouse
Technique:  RT-PCR.
References:  47
Retina.
Species:  Mouse
Technique:  In situ hybridisation
References:  15
Hypothalamus, retina, small intestine > liver, heart SA node.
Species:  Rat
Technique:  RT-PCR.
References:  59
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of cAMP levels in CHO cells transfected with the human MT2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  11,34
Measurement of cAMP levels in NIH 3T3 cells transfected with the human MT2 receptor.
Species:  Human
Tissue:  NIH 3T3 cells.
Response measured:  Inhibition of cAMP accumulation.
References:  28
Measurement of [35S]GTPγS binding in CHO cells transfected with the human MT2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  [35S]GTPγS binding.
References:  4
Measurement of [35S]GTPγS binding in NIH 3T3 cells transfected with the human MT2 receptor.
Species:  Human
Tissue:  NIH 3T3 cells.
Response measured:  [35S]GTPγS binding.
References:  49
Measurement of melatonin-mediated vasodilation in rat caudal arteries.
Species:  Rat
Tissue:  Caudal artery.
Response measured:  Vasodilation.
References:  16,44
Measurement of phase advance circadian rhythm neuronal firing in the mouse suprachiasmatic nucleus.
Species:  Mouse
Tissue:  Suprachiasmatic nucleus slice.
Response measured:  Phase shift of peak neuronal activity.
References:  22,41,53
Physiological Functions Click here for help
Increase in splenic lymphocyte proliferation.
Species:  Mouse
Tissue:  Splenocytes.
References:  17-18
Inhibition of proliferation.
Species:  Human
Tissue:  Choriocarcinoma JAr Cells.
References:  61
Physiological Consequences of Altering Gene Expression Click here for help
MT2 receptor knockout mice do not exhibit melatonin-mediated hippocampal LTP, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  72
MT2 receptor knockout mice do not exhibit luzindole-mediated antidepressant-like actions, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  68
MT2 receptor knockout mice are less sensitive to amphetamine than wild type mice and show increased dopamine uptake in striatal synaptosomes.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  8
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Mtnr1btm1Drw Mtnr1btm1Drw/Mtnr1btm1Drw
C3.129S4-Mtnr1b
MGI:2181726  MP:0002169 no abnormal phenotype detected PMID: 12529409 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Diabetes mellitus, noninsulin-dependent; NIDDM
Synonyms: Diabetes mellitus, Type II; T2D [OMIM: 125853]
Maturity onset diabetes
Type 2 diabetes mellitus [Disease Ontology: DOID:9352]
Disease Ontology: DOID:9352
OMIM: 125853
Role: 
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human A42P Very rare variant identified in type 2 diabetes patients, associated with type 2 diabetes risk, no melatonin binding and signaling 10
Missense Human L60R Very rare variant identified in control population and type 2 diabetes patients, associated with type 2 diabetes risk, no melatonin binding and signaling 2,10
Missense Human P95L Very rare variant identified in type 2 diabetes patients, associated with type 2 diabetes risk, no melatonin binding and signaling 10
Missense Human Y308S Very rare variant identified in type 2 diabetes patients, associated with type 2 diabetes risk, no melatonin binding and signaling 10
Biologically Significant Variants Click here for help
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  R330W
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, without obvious functional defect
Amino acid change:  A342V
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  A359E
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients and control population, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  I353T
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Rare variant, not associated with type 2 diabetes risk, no Gi and ERK1/2 activation
Amino acid change:  R138C
Nucleotide accession: 
Protein accession: 
References:  2,10,13
Type:  Missense mutation
Species:  Human
Description:  Common variant, not associated with type 2 diabetes risk but associated with prevalence of obesity and increased BMI shown in one study but not in another
Amino acid change:  G24E
Nucleotide accession: 
Protein accession: 
References:  2,10,13,26
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  G21S
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  R330Q
Nucleotide accession: 
Protein accession: 
References:  13
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  A234T
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  E237K
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  A13V
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  A25T
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  A8S
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  R316H
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, without obvious functional defect
Amino acid change:  S238G
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Common variant, not associated with type 2 diabetes risk
Amino acid change:  K243R
Nucleotide accession: 
Protein accession: 
References:  2,10,13
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, without obvious functional defect
Amino acid change:  D246N
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, without obvious functional defect
Amino acid change:  P36S
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients with impaired ERK1/2 activation
Amino acid change:  F250V
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  R138H
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  W22L
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Rare variant, not associated with type 2 diabetes risk
Amino acid change:  R231H
Nucleotide accession: 
Protein accession: 
References:  2,10,13
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  M146V
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  M120V
Nucleotide accession: 
Protein accession: 
References:  10,13
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  L166I
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in population with impaired fasting glucose and control population without obvious functional defect
Amino acid change:  M120I
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in population with impaired fasting glucose and control population without obvious functional defect
Amino acid change:  S123R
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  R222H
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, without obvious functional defect
Amino acid change:  I223T
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, without obvious functional defect
Amino acid change:  Y141F
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, without obvious functional defect
Amino acid change:  T201M
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in type 2 diabetes patients, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  A52T
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population and type 2 diabetes patients without obvious functional defect
Amino acid change:  R154H
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  R138L
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in several populations including type 2 diabetes and ADSD without obvious functional defect in one study and impaired ERK1/2 activation in another
Amino acid change:  V124I
Nucleotide accession: 
Protein accession: 
References:  2,10,13
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  G109A
Nucleotide accession: 
Protein accession: 
References:  10
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population without obvious functional defect
Amino acid change:  L66F
Nucleotide accession: 
Protein accession: 
References:  26
Type:  Missense mutation
Species:  Human
Description:  Very rare variant identified in control population and type 2 diabetes patients, associated with type 2 diabetes risk, impaired Gi protein activation
Amino acid change:  A74T
Nucleotide accession: 
Protein accession: 
References:  10

References

Show »

1. Al-Ghoul WM, Herman MD, Dubocovich ML. (1998) Melatonin receptor subtype expression in human cerebellum. Neuroreport, 9 (18): 4063-8. [PMID:9926848]

2. Andersson EA, Holst B, Sparsø T, Grarup N, Banasik K, Holmkvist J, Jørgensen T, Borch-Johnsen K, Egerod KL, Lauritzen T et al.. (2010) MTNR1B G24E variant associates With BMI and fasting plasma glucose in the general population in studies of 22,142 Europeans. Diabetes, 59 (6): 1539-48. [PMID:20200315]

3. Audinot V, Bonnaud A, Grandcolas L, Rodriguez M, Nagel N, Galizzi JP, Balik A, Messager S, Hazlerigg DG, Barrett P et al.. (2008) Molecular cloning and pharmacological characterization of rat melatonin MT1 and MT2 receptors. Biochem Pharmacol, 75 (10): 2007-19. [PMID:18384758]

4. Audinot V, Mailliet F, Lahaye-Brasseur C, Bonnaud A, Le Gall A, Amossé C, Dromaint S, Rodriguez M, Nagel N, Galizzi JP et al.. (2003) New selective ligands of human cloned melatonin MT1 and MT2 receptors. Naunyn Schmiedebergs Arch Pharmacol, 367 (6): 553-61. [PMID:12764576]

5. Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R. (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem, 277 (24): 21522-8. [PMID:11940583]

6. Ayoub MA, Levoye A, Delagrange P, Jockers R. (2004) Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol Pharmacol, 66 (2): 312-21. [PMID:15266022]

7. Baba K, Benleulmi-Chaachoua A, Journé AS, Kamal M, Guillaume JL, Dussaud S, Gbahou F, Yettou K, Liu C, Contreras-Alcantara S et al.. (2013) Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signal, 6 (296): ra89. [PMID:24106342]

8. Benleulmi-Chaachoua A, Hegron A, Le Boulch M, Karamitri A, Wierzbicka M, Wong V, Stagljar I, Delagrange P, Ahmad R, Jockers R. (2018) Melatonin receptors limit dopamine reuptake by regulating dopamine transporter cell-surface exposure. Cell Mol Life Sci, 75 (23): 4357-4370. [PMID:30043140]

9. Beresford IJ, Browning C, Starkey SJ, Brown J, Foord SM, Coughlan J, North PC, Dubocovich ML, Hagan RM. (1998) GR196429: a nonindolic agonist at high-affinity melatonin receptors. J Pharmacol Exp Ther, 285 (3): 1239-45. [PMID:9618428]

10. Bonnefond A, Clément N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, Dechaume A, Payne F, Roussel R, Czernichow S et al.. (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet, 44 (3): 297-301. [PMID:22286214]

11. Browning C, Beresford I, Fraser N, Giles H. (2000) Pharmacological characterization of human recombinant melatonin mt(1) and MT(2) receptors. Br J Pharmacol, 129 (5): 877-86. [PMID:10696085]

12. Brydon L, Petit L, Delagrange P, Strosberg AD, Jockers R. (2001) Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes. Endocrinology, 142 (10): 4264-71. [PMID:11564683]

13. Chaste P, Clement N, Mercati O, Guillaume JL, Delorme R, Botros HG, Pagan C, Périvier S, Scheid I, Nygren G, Anckarsäter H, Rastam M, Ståhlberg O, Gillberg C, Serrano E, Lemière N, Launay JM, Mouren-Simeoni MC, Leboyer M, Gillberg C, Jockers R, Bourgeron T. (2010) Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population. PLoS ONE, 5 (7): e11495. [PMID:20657642]

14. Cogé F, Guenin SP, Fery I, Migaud M, Devavry S, Slugocki C, Legros C, Ouvry C, Cohen W, Renault N et al.. (2009) The end of a myth: cloning and characterization of the ovine melatonin MT(2) receptor. Br J Pharmacol, 158 (5): 1248-62. [PMID:19814723]

15. Contreras-Alcantara S, Baba K, Tosini G. (2010) Removal of melatonin receptor type 1 induces insulin resistance in the mouse. Obesity (Silver Spring), 18 (9): 1861-3. [PMID:20168308]

16. Doolen S, Krause DN, Dubocovich ML, Duckles SP. (1998) Melatonin mediates two distinct responses in vascular smooth muscle. Eur J Pharmacol, 345 (1): 67-9. [PMID:9593596]

17. Drazen DL, Bilu D, Bilbo SD, Nelson RJ. (2001) Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am J Physiol Regul Integr Comp Physiol, 280 (5): R1476-82. [PMID:11294771]

18. Drazen DL, Nelson RJ. (2001) Melatonin receptor subtype MT2 (Mel 1b) and not mt1 (Mel 1a) is associated with melatonin-induced enhancement of cell-mediated and humoral immunity. Neuroendocrinology, 74 (3): 178-84. [PMID:11528219]

19. Drew JE, Williams LM, Hannah LT, Barrett P, Abramovich DR. (1998) Melatonin receptors in the human fetal kidney: 2-[125I]iodomelatonin binding sites correlated with expression of Mel1a and Mel1b receptor genes. J Endocrinol, 156 (2): 261-7. [PMID:9518871]

20. Dubocovich ML. (1985) Characterization of a retinal melatonin receptor. J Pharmacol Exp Ther, 234 (2): 395-401. [PMID:2991499]

21. Dubocovich ML. (1988) Luzindole (N-0774): a novel melatonin receptor antagonist. J Pharmacol Exp Ther, 246 (3): 902-10. [PMID:2843633]

22. Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E. (2005) Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res, 39 (2): 113-20. [PMID:16098087]

23. Dubocovich ML, Masana MI, Iacob S, Sauri DM. (1997) Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn Schmiedebergs Arch Pharmacol, 355 (3): 365-75. [PMID:9089668]

24. Dubocovich ML, Rivera-Bermudez MA, Gerdin MJ, Masana MI. (2003) Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci, 8: d1093-108. [PMID:12957828]

25. Dubocovich ML, Yun K, Al-Ghoul WM, Benloucif S, Masana MI. (1998) Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB J, 12 (12): 1211-20. [PMID:9737724]

26. Ebisawa T, Uchiyama M, Kajimura N, Kamei Y, Shibui K, Kim K, Kudo Y, Iwase T, Sugishita M, Jodoi T et al.. (2000) Genetic polymorphisms of human melatonin 1b receptor gene in circadian rhythm sleep disorders and controls. Neurosci Lett, 280 (1): 29-32. [PMID:10696804]

27. Ettaoussi M, Sabaouni A, Rami M, Boutin JA, Delagrange P, Renard P, Spedding M, Caignard DH, Berthelot P, Yous S. (2012) Design, synthesis and pharmacological evaluation of new series of naphthalenic analogues as melatoninergic (MT1/MT2) and serotoninergic 5-HT2C dual ligands (I). Eur J Med Chem, 49: 310-23. [PMID:22301214]

28. Faust R, Garratt PJ, Jones R, Yeh LK, Tsotinis A, Panoussopoulou M, Calogeropoulou T, Teh MT, Sugden D. (2000) Mapping the melatonin receptor. 6. Melatonin agonists and antagonists derived from 6H-isoindolo[2,1-a]indoles, 5,6-dihydroindolo[2,1-a]isoquinolines, and 6,7-dihydro-5H-benzo[c]azepino[2,1-a]indoles. J Med Chem, 43 (6): 1050-61. [PMID:10737738]

29. Gbahou F, Cecon E, Viault G, Gerbier R, Jean-Alphonse F, Karamitri A, Guillaumet G, Delagrange P, Friedlander RM, Vilardaga JP et al.. (2017) Design and validation of the first cell-impermeant melatonin receptor agonist. Br J Pharmacol, 174 (14): 2409-2421. [PMID:28493341]

30. Hu Y, Zhu J, Chan KH, Wong YH. (2013) Development of substituted N-[3-(3-methoxylphenyl)propyl] amides as MT(2)-selective melatonin agonists: improving metabolic stability. Bioorg Med Chem, 21 (2): 547-52. [PMID:23228808]

31. Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML. (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol, Cell Physiol, 280 (1): C110-8. [PMID:11121382]

32. Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR. (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol, 23 (3): 1054-60. [PMID:12529409]

33. Johansson LC, Stauch B, McCorvy JD, Han GW, Patel N, Huang XP, Batyuk A, Gati C, Slocum ST, Li C et al.. (2019) XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature, 569 (7755): 289-292. [PMID:31019305]

34. Kato K, Hirai K, Nishiyama K, Uchikawa O, Fukatsu K, Ohkawa S, Kawamata Y, Hinuma S, Miyamoto M. (2005) Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology, 48 (2): 301-10. [PMID:15695169]

35. Koike T, Hoashi Y, Takai T, Nakayama M, Yukuhiro N, Ishikawa T, Hirai K, Uchikawa O. (2011) 1,6-Dihydro-2H-indeno[5,4-b]furan derivatives: design, synthesis, and pharmacological characterization of a novel class of highly potent MT₂-selective agonists. J Med Chem, 54 (9): 3436-44. [PMID:21473625]

36. Koike T, Takai T, Hoashi Y, Nakayama M, Kosugi Y, Nakashima M, Yoshikubo S, Hirai K, Uchikawa O. (2011) Synthesis of a novel series of tricyclic dihydrofuran derivatives: discovery of 8,9-dihydrofuro[3,2-c]pyrazolo[1,5-a]pyridines as melatonin receptor (MT1/MT2) ligands. J Med Chem, 54 (12): 4207-18. [PMID:21568291]

37. Lanoix D, Ouellette R, Vaillancourt C. (2006) Expression of melatoninergic receptors in human placental choriocarcinoma cell lines. Hum Reprod, 21 (8): 1981-9. [PMID:16632463]

38. Legros C, Brasseur C, Delagrange P, Ducrot P, Nosjean O, Boutin JA. (2016) Alternative Radioligands for Investigating the Molecular Pharmacology of Melatonin Receptors. J Pharmacol Exp Ther, 356 (3): 681-92. [PMID:26759496]

39. Legros C, Matthey U, Grelak T, Pedragona-Moreau S, Hassler W, Yous S, Thomas E, Suzenet F, Folleas B, Lefoulon F et al.. (2013) New Radioligands for Describing the Molecular Pharmacology of MT1 and MT2 Melatonin Receptors. Int J Mol Sci, 14 (5): 8948-62. [PMID:23698757]

40. Levoye A, Dam J, Ayoub MA, Guillaume JL, Couturier C, Delagrange P, Jockers R. (2006) The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO J, 25 (13): 3012-23. [PMID:16778767]

41. Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM. (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron, 19 (1): 91-102. [PMID:9247266]

42. Lucini V, Pannacci M, Scaglione F, Fraschini F, Rivara S, Mor M, Bordi F, Plazzi PV, Spadoni G, Bedini A et al.. (2004) Tricyclic alkylamides as melatonin receptor ligands with antagonist or inverse agonist activity. J Med Chem, 47 (17): 4202-12. [PMID:15293992]

43. MacKenzie RS, Melan MA, Passey DK, Witt-Enderby PA. (2002) Dual coupling of MT(1) and MT(2) melatonin receptors to cyclic AMP and phosphoinositide signal transduction cascades and their regulation following melatonin exposure. Biochem Pharmacol, 63 (4): 587-95. [PMID:11992626]

44. Masana MI, Doolen S, Ersahin C, Al-Ghoul WM, Duckles SP, Dubocovich ML, Krause DN. (2002) MT(2) melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther, 302: 1295-1302. [PMID:12183692]

45. Masana MI, Dubocovich ML. (2001) Melatonin receptor signaling: finding the path through the dark. Sci STKE, 2001 (107): pe39. [PMID:11698691]

46. Mulchahey JJ, Goldwater DR, Zemlan FP. (2004) A single blind, placebo controlled, across groups dose escalation study of the safety, tolerability, pharmacokinetics and pharmacodynamics of the melatonin analog beta-methyl-6-chloromelatonin. Life Sci, 75 (15): 1843-56. [PMID:15302228]

47. Naji L, Carrillo-Vico A, Guerrero JM, Calvo JR. (2004) Expression of membrane and nuclear melatonin receptors in mouse peripheral organs. Life Sci, 74: 2227-2236. [PMID:14987948]

48. Niles LP, Wang J, Shen L, Lobb DK, Younglai EV. (1999) Melatonin receptor mRNA expression in human granulosa cells. Mol Cell Endocrinol, 156 (1-2): 107-10. [PMID:10612428]

49. Nonno R, Lucini V, Spadoni G, Pannacci M, Croce A, Esposti D, Balsamini C, Tarzia G, Fraschini F, Stankov BM. (2000) A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties. J Pineal Res, 29 (4): 234-40. [PMID:11068946]

50. Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R. (1999) Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3'-5'-monophosphate pathway. Biochem Pharmacol, 58 (4): 633-9. [PMID:10413300]

51. Poissonnier-Durieux S, Ettaoussi M, Pérès B, Boutin JA, Audinot V, Bennejean C, Delagrange P, Caignard DH, Renard P, Berthelot P et al.. (2008) Synthesis of 3-phenylnaphthalenic derivatives as new selective MT(2) melatoninergic ligands. Bioorg Med Chem, 16 (18): 8339-48. [PMID:18778943]

52. Rajaratnam SM, Polymeropoulos MH, Fisher DM, Roth T, Scott C, Birznieks G, Klerman EB. (2009) Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: two randomised controlled multicentre trials. Lancet, 373 (9662): 482-91. [PMID:19054552]

53. Rawashdeh O, Hudson RL, Stepien I, Dubocovich ML. (2011) Circadian periods of sensitivity for ramelteon on the onset of running-wheel activity and the peak of suprachiasmatic nucleus neuronal firing rhythms in C3H/HeN mice. Chronobiol Int, 28 (1): 31-8. [PMID:21182402]

54. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA, 92 (19): 8734-8. [PMID:7568007]

55. Reppert SM, Weaver DR, Godson C. (1996) Melatonin receptors step into the light: cloning and classification of subtypes. Trends Pharmacol Sci, 17 (3): 100-2. [PMID:8936344]

56. Rivara S, Lodola A, Mor M, Bedini A, Spadoni G, Lucini V, Pannacci M, Fraschini F, Scaglione F, Sanchez RO et al.. (2007) N-(substituted-anilinoethyl)amides: design, synthesis, and pharmacological characterization of a new class of melatonin receptor ligands. J Med Chem, 50 (26): 6618-26. [PMID:18052314]

57. Rivara S, Lorenzi S, Mor M, Plazzi PV, Spadoni G, Bedini A, Tarzia G. (2005) Analysis of structure-activity relationships for MT2 selective antagonists by melatonin MT1 and MT2 receptor models. J Med Chem, 48 (12): 4049-60. [PMID:15943478]

58. Roberts JE, Wiechmann AF, Hu DN. (2000) Melatonin receptors in human uveal melanocytes and melanoma cells. J Pineal Res, 28 (3): 165-71. [PMID:10739303]

59. Sallinen P, Saarela S, Ilves M, Vakkuri O, Leppäluoto J. (2005) The expression of MT1 and MT2 melatonin receptor mRNA in several rat tissues. Life Sci, 76 (10): 1123-34. [PMID:15620576]

60. Savaskan E, Ayoub MA, Ravid R, Angeloni D, Fraschini F, Meier F, Eckert A, Müller-Spahn F, Jockers R. (2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease. J Pineal Res, 38 (1): 10-6. [PMID:15617532]

61. Shiu SY, Li L, Xu JN, Pang CS, Wong JT, Pang SF. (1999) Melatonin-induced inhibition of proliferation and G1/S cell cycle transition delay of human choriocarcinoma JAr cells: possible involvement of MT2 (MEL1B) receptor. J Pineal Res, 27 (3): 183-92. [PMID:10535768]

62. Soares Jr JM, Masana MI, Erşahin C, Dubocovich ML. (2003) Functional melatonin receptors in rat ovaries at various stages of the estrous cycle. J Pharmacol Exp Ther, 306 (2): 694-702. [PMID:12721330]

63. Spadoni G, Bedini A, Diamantini G, Tarzia G, Rivara S, Lorenzi S, Lodola A, Mor M, Lucini V, Pannacci M et al.. (2007) Synthesis, enantiomeric resolution, and structure-activity relationship study of a series of 10,11-dihydro-5H-dibenzo[a,d]cycloheptene MT2 receptor antagonists. ChemMedChem, 2 (12): 1741-9. [PMID:17907131]

64. Spadoni G, Bedini A, Furiassi L, Mari M, Mor M, Scalvini L, Lodola A, Ghidini A, Lucini V, Dugnani S et al.. (2018) Identification of Bivalent Ligands with Melatonin Receptor Agonist and Fatty Acid Amide Hydrolase (FAAH) Inhibitory Activity That Exhibit Ocular Hypotensive Effect in the Rabbit. J Med Chem, 61 (17): 7902-7916. [PMID:30126274]

65. Spadoni G, Bedini A, Lucarini S, Mari M, Caignard DH, Boutin JA, Delagrange P, Lucini V, Scaglione F, Lodola A et al.. (2015) Highly Potent and Selective MT2 Melatonin Receptor Full Agonists from Conformational Analysis of 1-Benzyl-2-acylaminomethyl-tetrahydroquinolines. J Med Chem, 58 (18): 7512-25. [PMID:26334942]

66. Stein RM, Kang HJ, McCorvy JD, Glatfelter GC, Jones AJ, Che T, Slocum S, Huang XP, Savych O, Moroz YS et al.. (2020) Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 579 (7800): 609-614. [PMID:32040955]

67. Sugden D, Yeh LK, Teh MT. (1999) Design of subtype selective melatonin receptor agonists and antagonists. Reprod Nutr Dev, 39 (3): 335-44. [PMID:10420436]

68. Sumaya IC, Masana MI, Dubocovich ML. (2005) The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res, 39 (2): 170-7. [PMID:16098095]

69. Teh MT, Sugden D. (1998) Comparison of the structure-activity relationships of melatonin receptor agonists and antagonists: lengthening the N-acyl side-chain has differing effects on potency on Xenopus melanophores. Naunyn Schmiedebergs Arch Pharmacol, 358 (5): 522-8. [PMID:9840420]

70. Teh MT, Sugden D. (1999) The putative melatonin receptor antagonist GR128107 is a partial agonist on Xenopus laevis melanophores. Br J Pharmacol, 126 (5): 1237-45. [PMID:10205014]

71. Vanda Pharmaceuticals. Tasimelteon Advisory Committee Meeting Briefing Materials. Accessed on 08/10/2014. Modified on 08/10/2014. FDA, http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/PeripheralandCentralNervousSystemDrugsAdvisoryCommittee/UCM374388.pdf

72. Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. (2005) Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci, 22 (9): 2231-7. [PMID:16262661]

73. Zlotos DP, Attia MI, Julius J, Sethi S, Witt-Enderby PA. (2009) 2-[(2,3-dihydro-1H-indol-1-yl)methyl]melatonin analogues: a novel class of MT2-selective melatonin receptor antagonists. J Med Chem, 52 (3): 826-33. [PMID:19193160]

Contributors

Show »

How to cite this page