Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [12]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [45-46,54,58]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [15]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [13,71]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [71], but they are classified as GABAA receptors by NC-IUPHAR on the basis of structural and functional criteria [6,45-46].
Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [33,45]. It is thought that the majority of GABAA receptors harbour a single type of α- and β -subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [7,17,41,52,60]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([49]; reviewed by [57]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by ‘classical’ benzodiazepines, such as flunitrazepam (but see [69]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [14,26,39,66] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas those incorporating the δ subunit appear to be exclusively extrasynaptic.
NC-IUPHAR [2-3,6,45] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α2βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [45-46]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [4-6,20,27,33,36,42,45-46,54,56]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [13,28,43,71].
Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [40].
GABAA receptor α1 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor α2 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor α3 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor α4 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor α5 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor α6 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor β1 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor β2 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor β3 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor γ1 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor γ2 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor γ3 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor δ subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor ε subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor θ subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor π subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor ρ1 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor ρ2 subunit C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GABAA receptor ρ3 subunit C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Atack JR. (2008) GABA(A) receptor subtype-selective efficacy: TPA023, an alpha2/alpha3 selective non-sedating anxiolytic and alpha5IA, an alpha5 selective cognition enhancer. CNS Neurosci Ther, 14 (1): 25-35. [PMID:18482097]
Atack JR. (2010) GABAA receptor alpha2/alpha3 subtype-selective modulators as potential nonsedating anxiolytics. Curr Top Behav Neurosci, 2: 331-60. [PMID:21309116]
Bali A, Jaggi AS. (2014) Multifunctional aspects of allopregnanolone in stress and related disorders. Prog Neuropsychopharmacol Biol Psychiatry, 48: 64-78. [PMID:24044974]
Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ. (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev, 50 (2): 291-313. [PMID:9647870]
Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci, 29 (41): 12757-63. [PMID:19828786]
Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ. (2005) Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci, 25 (50): 11513-20. [PMID:16354909]
Bonin RP, Orser BA. (2008) GABA(A) receptor subtypes underlying general anesthesia. Pharmacol Biochem Behav, 90 (1): 105-12. [PMID:18201756]
Bowery NG, Smart TG. (2006) GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol, 147 Suppl 1: S109-19. [PMID:16402094]
* Braat S, Kooy RF. (2015) The GABAA Receptor as a Therapeutic Target for Neurodevelopmental Disorders. Neuron, 86 (5): 1119-30. [PMID:26050032]
* Calvo DJ, Beltrán González AN. (2016) Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms. Mol Pharmacol, 90 (3): 326-33. [PMID:27439531]
Capogna M, Pearce RA. (2011) GABA A,slow: causes and consequences. Trends Neurosci, 34 (2): 101-12. [PMID:21145601]
Chebib M. (2004) GABAC receptor ion channels. Clin Exp Pharmacol Physiol, 31 (11): 800-4. [PMID:15566397]
Chen ZW, Olsen RW. (2007) GABAA receptor associated proteins: a key factor regulating GABAA receptor function. J Neurochem, 100 (2): 279-94. [PMID:17083446]
D'Hulst C, Atack JR, Kooy RF. (2009) The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today, 14 (17-18): 866-75. [PMID:19576998]
Daniel C, Ohman M. (2009) RNA editing and its impact on GABAA receptor function. Biochem Soc Trans, 37 (Pt 6): 1399-403. [PMID:19909284]
Farrant M, Kaila K. (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res, 160: 59-87. [PMID:17499109]
Farrant M, Nusser Z. (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci, 6 (3): 215-29. [PMID:15738957]
Frølund B, Ebert B, Kristiansen U, Liljefors T, Krogsgaard-Larsen P. (2002) GABA(A) receptor ligands and their therapeutic potentials. Curr Top Med Chem, 2 (8): 817-32. [PMID:12171573]
Galanopoulou AS. (2010) Mutations affecting GABAergic signaling in seizures and epilepsy. Pflugers Arch, 460 (2): 505-23. [PMID:20352446]
Hanchar HJ, Wallner M, Olsen RW. (2004) Alcohol effects on gamma-aminobutyric acid type A receptors: are extrasynaptic receptors the answer?. Life Sci, 76 (1): 1-8. [PMID:15501475]
Hemmings HC, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. (2005) Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci, 26 (10): 503-10. [PMID:16126282]
Herd MB, Belelli D, Lambert JJ. (2007) Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. Pharmacol Ther, 116 (1): 20-34. [PMID:17531325]
Hosie AM, Wilkins ME, Smart TG. (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther, 116 (1): 7-19. [PMID:17560657]
Jacob TC, Moss SJ, Jurd R. (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci, 9 (5): 331-43. [PMID:18382465]
Johnston GA. (2005) GABA(A) receptor channel pharmacology. Curr Pharm Des, 11 (15): 1867-85. [PMID:15974965]
Johnston GA, Chebib M, Hanrahan JR, Mewett KN. (2010) Neurochemicals for the investigation of GABA(C) receptors. Neurochem Res, 35 (12): 1970-7. [PMID:20963487]
Korpi ER, Debus F, Linden AM, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W et al.. (2007) Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol, 41 (3): 163-76. [PMID:17591542]
Krogsgaard-Larsen P, Frølund B, Liljefors T. (2002) Specific GABA(A) agonists and partial agonists. Chem Rec, 2 (6): 419-30. [PMID:12469353]
Luscher B, Fuchs T, Kilpatrick CL. (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron, 70 (3): 385-409. [PMID:21555068]
* Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A et al.. (2019) GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 565 (7740): 454-459. [PMID:30602790]
* Mele M, Leal G, Duarte CB. (2016) Role of GABAA R trafficking in the plasticity of inhibitory synapses. J Neurochem, 139 (6): 997-1018. [PMID:27424566]
Mody I, Pearce RA. (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci, 27 (9): 569-75. [PMID:15331240]
Munro G, Ahring PK, Mirza NR. (2009) Developing analgesics by enhancing spinal inhibition after injury: GABAA receptor subtypes as novel targets. Trends Pharmacol Sci, 30 (9): 453-9. [PMID:19729210]
Möhler H. (2006) GABAA receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J Recept Signal Transduct Res, 26 (5-6): 731-40. [PMID:17118808]
Möhler H. (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem, 102 (1): 1-12. [PMID:17394533]
Möhler H, Fritschy JM, Vogt K, Crestani F, Rudolph U. (2005) Pathophysiology and pharmacology of GABA(A) receptors. Handb Exp Pharmacol, (169): 225-47. [PMID:16594261]
Ng CK, Kim HL, Gavande N, Yamamoto I, Kumar RJ, Mewett KN, Johnston GA, Hanrahan JR, Chebib M. (2011) Medicinal chemistry of ρ GABAC receptors. Future Med Chem, 3 (2): 197-209. [PMID:21428815]
Nutt DJ, Stahl SM. (2010) Searching for perfect sleep: the continuing evolution of GABAA receptor modulators as hypnotics. J Psychopharmacol (Oxford), 24 (11): 1601-12. [PMID:19942638]
Olsen RW, Chang CS, Li G, Hanchar HJ, Wallner M. (2004) Fishing for allosteric sites on GABA(A) receptors. Biochem Pharmacol, 68 (8): 1675-84. [PMID:15451411]
Olsen RW, Li GD. (2011) GABA(A) receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation. Can J Anaesth, 58 (2): 206-15. [PMID:21194017]
Olsen RW, Sieghart W. (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology, 56 (1): 141-8. [PMID:18760291]
Rudolph U, Möhler H. (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol, 44: 475-98. [PMID:14744255]
Rudolph U, Möhler H. (2006) GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol, 6 (1): 18-23. [PMID:16376150]
Semyanov A, Walker MC, Kullmann DM, Silver RA. (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci, 27 (5): 262-9. [PMID:15111008]
Sieghart W. (2006) Structure, pharmacology, and function of GABAA receptor subtypes. Adv Pharmacol, 54: 231-63. [PMID:17175817]
* Sieghart W, Savić MM. (2018) International Union of Basic and Clinical Pharmacology. CVI: GABAA Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev, 70 (4): 836-878. [PMID:30275042]
Sigel E, Lüscher BP. (2011) A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Curr Top Med Chem, 11 (2): 241-6. [PMID:21189125]
Tan KR, Rudolph U, Lüscher C. (2011) Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci, 34 (4): 188-97. [PMID:21353710]
Veleiro AS, Burton G. (2009) Structure-activity relationships of neuroactive steroids acting on the GABAA receptor. Curr Med Chem, 16 (4): 455-72. [PMID:19199916]
Vithlani M, Terunuma M, Moss SJ. (2011) The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev, 91 (3): 1009-22. [PMID:21742794]
Wallner M, Hanchar HJ, Olsen RW. (2006) Low dose acute alcohol effects on GABA A receptor subtypes. Pharmacol Ther, 112 (2): 513-28. [PMID:16814864]
Zeller A, Jurd R, Lambert S, Arras M, Drexler B, Grashoff C, Antkowiak B, Rudolph U. (2008) Inhibitory ligand-gated ion channels as substrates for general anesthetic actions. Handb Exp Pharmacol, (182): 31-51. [PMID:18175085]
Zhang D, Pan ZH, Awobuluyi M, Lipton SA. (2001) Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci, 22 (3): 121-32. [PMID:11239575]
1. Albaugh PA, Marshall L, Gregory J, White G, Hutchison A, Ross PC, Gallagher DW, Tallman JF, Crago M, Cassella JV. (2002) Synthesis and biological evaluation of 7,8,9,10-tetrahydroimidazo[1,2-c]pyrido[3,4-e]pyrimdin-5(6H)-ones as functionally selective ligands of the benzodiazepine receptor site on the GABA(A) receptor. J Med Chem, 45 (23): 5043-51. [PMID:12408715]
2. Alexander SP, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Southan C, Davies JA et al.. (2015) The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. Br J Pharmacol, 172 (24): 5942-55. [PMID:26650442]
3. Alexander SP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman JL, Southan C, Davies JA et al.. (2017) THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Other ion channels. Br J Pharmacol, 174 Suppl 1: S195-S207. [PMID:29055039]
4. Atack JR. (2008) GABA(A) receptor subtype-selective efficacy: TPA023, an alpha2/alpha3 selective non-sedating anxiolytic and alpha5IA, an alpha5 selective cognition enhancer. CNS Neurosci Ther, 14 (1): 25-35. [PMID:18482097]
5. Atack JR. (2010) GABAA receptor alpha2/alpha3 subtype-selective modulators as potential nonsedating anxiolytics. Curr Top Behav Neurosci, 2: 331-60. [PMID:21309116]
6. Barnard EA, Skolnick P, Olsen RW, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ. (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev, 50 (2): 291-313. [PMID:9647870]
7. Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW. (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci, 29 (41): 12757-63. [PMID:19828786]
8. Belelli D, Lambert JJ. (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci, 6 (7): 565-75. [PMID:15959466]
9. Bianchi MT, Macdonald RL. (2003) Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci, 23 (34): 10934-43. [PMID:14645489]
10. Bonin RP, Orser BA. (2008) GABA(A) receptor subtypes underlying general anesthesia. Pharmacol Biochem Behav, 90 (1): 105-12. [PMID:18201756]
11. Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA. (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABA(A) receptors. Br J Pharmacol, 136 (7): 965-74. [PMID:12145096]
12. Capogna M, Pearce RA. (2011) GABA A,slow: causes and consequences. Trends Neurosci, 34 (2): 101-12. [PMID:21145601]
13. Chebib M. (2004) GABAC receptor ion channels. Clin Exp Pharmacol Physiol, 31 (11): 800-4. [PMID:15566397]
14. Chen ZW, Olsen RW. (2007) GABAA receptor associated proteins: a key factor regulating GABAA receptor function. J Neurochem, 100 (2): 279-94. [PMID:17083446]
15. Daniel C, Ohman M. (2009) RNA editing and its impact on GABAA receptor function. Biochem Soc Trans, 37 (Pt 6): 1399-403. [PMID:19909284]
16. Fabjan J, Koniuszewski F, Schaar B, Ernst M. (2020) Structure-Guided Computational Methods Predict Multiple Distinct Binding Modes for Pyrazoloquinolinones in GABAA Receptors. Front Neurosci, 14: 611953. [PMID:33519364]
17. Farrant M, Nusser Z. (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci, 6 (3): 215-29. [PMID:15738957]
18. Fisher JL. (2002) Amiloride inhibition of gamma-aminobutyric acid(A) receptors depends upon the alpha subunit subtype. Mol Pharmacol, 61 (6): 1322-8. [PMID:12021393]
19. Fisher JL. (2009) The anti-convulsant stiripentol acts directly on the GABA(A) receptor as a positive allosteric modulator. Neuropharmacology, 56 (1): 190-7. [PMID:18585399]
20. Frølund B, Ebert B, Kristiansen U, Liljefors T, Krogsgaard-Larsen P. (2002) GABA(A) receptor ligands and their therapeutic potentials. Curr Top Med Chem, 2 (8): 817-32. [PMID:12171573]
21. Hadingham KL, Garrett EM, Wafford KA, Bain C, Heavens RP, Sirinathsinghji DJ, Whiting PJ. (1996) Cloning of cDNAs encoding the human gamma-aminobutyric acid type A receptor alpha 6 subunit and characterization of the pharmacology of alpha 6-containing receptors. Mol Pharmacol, 49 (2): 253-9. [PMID:8632757]
22. Hadingham KL, Wafford KA, Thompson SA, Palmer KJ, Whiting PJ. (1995) Expression and pharmacology of human GABAA receptors containing gamma 3 subunits. Eur J Pharmacol, 291 (3): 301-9. [PMID:8719414]
23. Hemmings HC, Akabas MH, Goldstein PA, Trudell JR, Orser BA, Harrison NL. (2005) Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci, 26 (10): 503-10. [PMID:16126282]
24. Herd MB, Belelli D, Lambert JJ. (2007) Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. Pharmacol Ther, 116 (1): 20-34. [PMID:17531325]
25. Hosie AM, Wilkins ME, Smart TG. (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther, 116 (1): 7-19. [PMID:17560657]
26. Jacob TC, Moss SJ, Jurd R. (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci, 9 (5): 331-43. [PMID:18382465]
27. Johnston GA. (2005) GABA(A) receptor channel pharmacology. Curr Pharm Des, 11 (15): 1867-85. [PMID:15974965]
28. Johnston GA, Chebib M, Hanrahan JR, Mewett KN. (2010) Neurochemicals for the investigation of GABA(C) receptors. Neurochem Res, 35 (12): 1970-7. [PMID:20963487]
29. Karim N, Wellendorph P, Absalom N, Johnston GA, Hanrahan JR, Chebib M. (2013) Potency of GABA at human recombinant GABA(A) receptors expressed in Xenopus oocytes: a mini review. Amino Acids, 44 (4): 1139-49. [PMID:23385381]
30. Khom S, Baburin I, Timin EN, Hohaus A, Sieghart W, Hering S. (2006) Pharmacological properties of GABAA receptors containing gamma1 subunits. Mol Pharmacol, 69 (2): 640-9. [PMID:16272224]
31. Khom S, Strommer B, Ramharter J, Schwarz T, Schwarzer C, Erker T, Ecker GF, Mulzer J, Hering S. (2010) Valerenic acid derivatives as novel subunit-selective GABAA receptor ligands - in vitro and in vivo characterization. Br J Pharmacol, 161 (1): 65-78. [PMID:20718740]
32. Korpi ER, Debus F, Linden AM, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W et al.. (2007) Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol, 41 (3): 163-76. [PMID:17591542]
33. Korpi ER, Gründer G, Lüddens H. (2002) Drug interactions at GABA(A) receptors. Prog Neurobiol, 67 (2): 113-59. [PMID:12126658]
34. Krehan D, Frølund B, Ebert B, Nielsen B, Krogsgaard-Larsen P, Johnston GA, Chebib M. (2003) Aza-THIP and related analogues of THIP as GABA C antagonists. Bioorg Med Chem, 11 (23): 4891-6. [PMID:14604650]
35. Krishek BJ, Moss SJ, Smart TG. (1998) Interaction of H+ and Zn2+ on recombinant and native rat neuronal GABAA receptors. J Physiol (Lond.), 507 ( Pt 3): 639-52. [PMID:9508826]
36. Krogsgaard-Larsen P, Frølund B, Liljefors T. (2002) Specific GABA(A) agonists and partial agonists. Chem Rec, 2 (6): 419-30. [PMID:12469353]
37. Li GD, Chiara DC, Cohen JB, Olsen RW. (2009) Neurosteroids allosterically modulate binding of the anesthetic etomidate to gamma-aminobutyric acid type A receptors. J Biol Chem, 284 (18): 11771-5. [PMID:19282280]
38. Li GD, Chiara DC, Sawyer GW, Husain SS, Olsen RW, Cohen JB. (2006) Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci, 26 (45): 11599-605. [PMID:17093081]
39. Luscher B, Fuchs T, Kilpatrick CL. (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron, 70 (3): 385-409. [PMID:21555068]
40. Masiulis S, Desai R, Uchański T, Serna Martin I, Laverty D, Karia D, Malinauskas T, Zivanov J, Pardon E, Kotecha A et al.. (2019) GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature, 565 (7740): 454-459. [PMID:30602790]
41. Mody I, Pearce RA. (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci, 27 (9): 569-75. [PMID:15331240]
42. Möhler H. (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem, 102 (1): 1-12. [PMID:17394533]
43. Ng CK, Kim HL, Gavande N, Yamamoto I, Kumar RJ, Mewett KN, Johnston GA, Hanrahan JR, Chebib M. (2011) Medicinal chemistry of ρ GABAC receptors. Future Med Chem, 3 (2): 197-209. [PMID:21428815]
44. Olsen RW, Li GD. (2011) GABA(A) receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation. Can J Anaesth, 58 (2): 206-15. [PMID:21194017]
45. Olsen RW, Sieghart W. (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev, 60 (3): 243-60. [PMID:18790874]
46. Olsen RW, Sieghart W. (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology, 56 (1): 141-8. [PMID:18760291]
47. Pritchett DB, Lüddens H, Seeburg PH. (1989) Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science, 245 (4924): 1389-92. [PMID:2551039]
48. Ramerstorfer J, Furtmüller R, Vogel E, Huck S, Sieghart W. (2010) The point mutation gamma 2F77I changes the potency and efficacy of benzodiazepine site ligands in different GABAA receptor subtypes. Eur J Pharmacol, 636 (1-3): 18-27. [PMID:20303942]
49. Ramerstorfer J, Furtmüller R, Sarto-Jackson I, Varagic Z, Sieghart W, Ernst M. (2011) The GABAA receptor alpha+beta- interface: a novel target for subtype selective drugs. J Neurosci, 31 (3): 870-7. [PMID:21248110]
50. Saxena NC, Neelands TR, MacDonald RL. (1997) Contrasting actions of lanthanum on different recombinant gamma-aminobutyric acid receptor isoforms expressed in L929 fibroblasts. Mol Pharmacol, 51 (2): 328-35. [PMID:9203639]
51. Scholze P, Ebert V, Sieghart W. (1996) Affinity of various ligands for GABAA receptors containing alpha 4 beta 3 gamma 2, alpha 4 gamma 2, or alpha 1 beta 3 gamma 2 subunits. Eur J Pharmacol, 304 (1-3): 155-62. [PMID:8813598]
52. Semyanov A, Walker MC, Kullmann DM, Silver RA. (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci, 27 (5): 262-9. [PMID:15111008]
53. Sergeeva OA, Kletke O, Kragler A, Poppek A, Fleischer W, Schubring SR, Görg B, Haas HL, Zhu XR, Lübbert H et al.. (2010) Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors. J Biol Chem, 285 (31): 23985-93. [PMID:20511229]
54. Sieghart W. (2006) Structure, pharmacology, and function of GABAA receptor subtypes. Adv Pharmacol, 54: 231-63. [PMID:17175817]
55. Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savic; M, Lee MT. (2022) α 6-Containing GABAA Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev, 74 (1): 238-270. [PMID:35017178]
56. Sieghart W, Savić MM. (2018) International Union of Basic and Clinical Pharmacology. CVI: GABAA Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev, 70 (4): 836-878. [PMID:30275042]
57. Sigel E, Lüscher BP. (2011) A closer look at the high affinity benzodiazepine binding site on GABAA receptors. Curr Top Med Chem, 11 (2): 241-6. [PMID:21189125]
58. Sigel E, Steinmann ME. (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem, 287 (48): 40224-31. [PMID:23038269]
59. Skolnick P, Hu RJ, Cook CM, Hurt SD, Trometer JD, Liu R, Huang Q, Cook JM. (1997) [3H]RY 80: A high-affinity, selective ligand for gamma-aminobutyric acidA receptors containing alpha-5 subunits. J Pharmacol Exp Ther, 283 (2): 488-93. [PMID:9353361]
60. Smith SS. (2013) α4βδ GABAA receptors and tonic inhibitory current during adolescence: effects on mood and synaptic plasticity. Front Neural Circuits, 7: 135. [PMID:24027497]
61. Stórustovu SI, Ebert B. (2006) Pharmacological characterization of agonists at delta-containing GABAA receptors: Functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J Pharmacol Exp Ther, 316 (3): 1351-9. [PMID:16272218]
62. Thompson SA, Bonnert TP, Cagetti E, Whiting PJ, Wafford KA. (2002) Overexpression of the GABA(A) receptor epsilon subunit results in insensitivity to anaesthetics. Neuropharmacology, 43 (4): 662-8. [PMID:12367611]
63. Thompson SA, Smith MZ, Wingrove PB, Whiting PJ, Wafford KA. (1999) Mutation at the putative GABA(A) ion-channel gate reveals changes in allosteric modulation. Br J Pharmacol, 127 (6): 1349-58. [PMID:10455284]
64. Thompson SA, Wheat L, Brown NA, Wingrove PB, Pillai GV, Whiting PJ, Adkins C, Woodward CH, Smith AJ, Simpson PB et al.. (2004) Salicylidene salicylhydrazide, a selective inhibitor of beta 1-containing GABAA receptors. Br J Pharmacol, 142 (1): 97-106. [PMID:15100159]
65. Veleiro AS, Burton G. (2009) Structure-activity relationships of neuroactive steroids acting on the GABAA receptor. Curr Med Chem, 16 (4): 455-72. [PMID:19199916]
66. Vithlani M, Terunuma M, Moss SJ. (2011) The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev, 91 (3): 1009-22. [PMID:21742794]
67. Wafford KA, van Niel MB, Ma QP, Horridge E, Herd MB, Peden DR, Belelli D, Lambert JJ. (2009) Novel compounds selectively enhance delta subunit containing GABA A receptors and increase tonic currents in thalamus. Neuropharmacology, 56 (1): 182-9. [PMID:18762200]
68. Wallner M, Hanchar HJ, Olsen RW. (2006) Low dose acute alcohol effects on GABA A receptor subtypes. Pharmacol Ther, 112 (2): 513-28. [PMID:16814864]
69. You H, Kozuska JL, Paulsen IM, Dunn SM. (2010) Benzodiazepine modulation of the rat GABAA receptor α4β3γ2L subtype expressed in Xenopus oocytes. Neuropharmacology, 59 (6): 527-33. [PMID:20638393]
70. Zezula J, Slany A, Sieghart W. (1996) Interaction of allosteric ligands with GABAA receptors containing one, two, or three different subunits. Eur J Pharmacol, 301 (1-3): 207-14. [PMID:8773466]
71. Zhang D, Pan ZH, Awobuluyi M, Lipton SA. (2001) Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol Sci, 22 (3): 121-32. [PMID:11239575]
Subcommittee members:
Werner Sieghart |
Other contributors:
Delia Belelli
Tim G. Hales
Jeremy J. Lambert
Bernhard Luscher
Richard Olsen
John A. Peters
Uwe Rudolph |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol. 180 Suppl 2:S145-S222.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The potency and efficacy of many GABA agonists vary between GABAA receptor isoforms [20,29,36]. For example, gaboxadol is a partial agonist at receptors with the subunit composition α4β3γ2, but elicits currents in excess of those evoked by GABA at the α4β3δ receptor where GABA itself is a low efficacy agonist [9,11]. The antagonists bicuculline and gabazine differ in their ability to suppress spontaneous openings of the GABAA receptor, the former being more effective [63]. The presence of the γ subunit within the heterotrimeric complex reduces the potency and efficacy of agonists [61]. The GABAA receptor contains multiple allosteric binding sites. Most drugs modulating GABAA receptors can bind to several different sites [16]. Distinct allosteric sites bind barbiturates and endogenous (e.g., 5α-pregnan-3α-ol-20-one) and synthetic (e.g., alphaxalone) neuroactive steroids in a diastereo- or enantio-selective manner [8,24-25,65]. Picrotoxinin and TBPS act at an allosteric site within the chloride channel pore to negatively regulate channel activity; negative allosteric regulation by γ-butyrolactone derivatives also involves the picrotoxinin site, whereas positive allosteric regulation by such compounds is proposed to occur at a distinct locus. Many intravenous (e.g., etomidate, propofol) and inhalational (e.g., halothane, isoflurane) anaesthetics and alcohols also exert a regulatory influence upon GABAA receptor activity [10,44]. Specific amino acid residues within GABAA receptor α- and β-subunits that influence allosteric regulation by anaesthetic and non-anaesthetic compounds have been identified [23,25]. Photoaffinity labelling of distinct amino acid residues within purified GABAA receptors by the etomidate derivative, [3H]azietomidate, has also been demonstrated [38], and this binding is subject to positive allosteric regulation by neurosteroids [37]. An array of natural products including flavonoid and terpenoid compounds exert varied actions at GABAA receptors (reviewed in detail in [27]).
In addition to the agents listed in the table, modulators of GABAA receptor activity that exhibit subunit dependent activity include: salicylidene salicylhydrazide (negative allosteric modulator selective for β1- versus β2-, or β3-subunit-containing receptors [64]); fragrant dioxane derivatives (positive allosteric modulators selective for β1- versus β2-, or β3-subunit-containing receptors [53]); loreclezole, etomidate, tracazolate, mefenamic acid, etifoxine, stiripentol, valerenic acid amide (positive allosteric modulators with selectivity for β2/β3- over β1-subunit-containing receptors [19,31,33]); tracazolate (intrinsic efficacy, i.e., potentiation, or inhibition, is dependent upon the identity of the γ1-3-, δ-, or ε-subunit co-assembed with α1- and β1-subunits [62]); amiloride (selective blockade of receptors containing an α6-subunit [18]); furosemide (selective blockade of receptors containing an α6-subunit co-assembled with β2/β3-, but not β1-subunit [33]); La3+ (potentiates responses mediated by α1β3γ2L receptors, weakly inhibits α6β3γ2L receptors, and strongly blocks α6β3δ and α4β3δ receptors [11,50]); ethanol (selectively potentiates responses mediated by α4β3δ and α6β3δ receptors versus receptors in which β2 replaces β3, or γ replaces δ [68], but see also [32]); DS1 and DS2 (selectively potentiate responses mediated by δ-subunit-containing receptors [67]). It should be noted that the apparent selectivity of some positive allosteric modulators (e.g., neurosteroids such as 5α-pregnan-3α-ol-20-one for δ-subunit-containing receptors (e.g., α1β3δ) may be a consequence of the unusually low efficacy of GABA at this receptor isoform [7,9].