Top ▲

CXCR5

Click here for help

Target id: 72

Nomenclature: CXCR5

Family: Chemokine receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 372 11q23.3 CXCR5 C-X-C motif chemokine receptor 5 11
Mouse 7 374 9 24.84 cM Cxcr5 C-X-C motif chemokine receptor 5 21
Rat 7 374 8q22 Cxcr5 C-X-C motif chemokine receptor 5 23
Previous and Unofficial Names Click here for help
BLR-1 [14,25] | MDR15 [3] | NLR [23] | CD185 | Burkitt lymphoma receptor 1 | CXC-R5 | neurolymphatic receptor | Gpcr6
Database Links Click here for help
Specialist databases
GPCRdb cxcr5_human (Hs), cxcr5_mouse (Mm), cxcr5_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
CXCL13 {Sp: Human} , CXCL13 {Sp: Mouse}

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
CXCL13 {Sp: Human} Peptide Ligand is endogenous in the given species Immunopharmacology Ligand Hs Full agonist 7.3 pKd 4
pKd 7.3 (Kd 5.05x10-8 M) [4]
[125I]CXCL13 (mouse) Peptide Primary target of this compound Ligand is labelled Ligand is radioactive Mm Agonist - - 6
[6]
View species-specific agonist tables
Agonist Comments
It has been shown that the main ligand for the CXCR5 receptor is CXCL13 (BLC, BCA-1) [25]
Immunopharmacology Comments
CXCR5 is one of more than 20 distinct chemokine receptors expressed in human leukocytes. Chemokines primarily act to promote leukocyte chemotaxis to sites of inflammation.
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  B cell (activation)
Immuno Process:  Immune system development
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Immuno Process:  Cellular signalling
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Calcium channel
References: 
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Other - See Comments
Comments:  Activation of the MAP kinase cascade via ERK1/2 [29].
References: 
Tissue Distribution Click here for help
Glomerular podocytes.
Species:  Human
Technique:  RT-PCR.
References:  18
Blood and cerebrospinal fluid B cells.
Species:  Human
Technique:  Flow cytometry.
References:  42
Peripheral blood follicular helper T cells (TFH) (subset of CD4+ T cells), CD8+ T cells, B cells.
Species:  Human
Technique:  Flow cytometry.
References:  35
B and T cells in gut associated lymphoid tissue.
Species:  Human
Technique:  Immunofluorescence.
References:  9
Peripheral blood and tonsillar T cells.
Species:  Human
Technique:  Flow cytometry.
References:  36
Bone marrow stromal cells (BMSCs).
Species:  Human
Technique:  Flow cytometry and RT-PCR.
References:  17
Osteoblasts.
Species:  Human
Technique:  RT-PCR and flow cytometry.
References:  26
Cerebellum, Purkinje and granule cell layer.
Species:  Mouse
Technique:  In situ hybridization.
References:  21
Lymphoid tissue inducer cells.
Species:  Mouse
Technique:  Flow cytometry.
References:  30
Fetal liver and brain.
Species:  Mouse
Technique:  Northern blot.
References:  21
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of Ca2+ levels in murine pre-B cells transfected with the human CXCR5 receptor.
Species:  Human
Tissue:  Murine pre-B cells 300-19.
Response measured:  Ca2+ mobilisation.
References:  25
Measurement of chemotaxis of blood B lymphocytes endogenously expressing the CXCR5 receptor.
Species:  Human
Tissue:  Blood B lymphocytes.
Response measured:  Chemotaxis.
References:  25
Detection of HIV-2 entry into NP-2 cells transfected with the human CXCR5 receptor and CD4.
Species:  Human
Tissue:  NP-2 cell line.
Response measured:  HIV-2 entry.
References:  22
Measurement of chemotaxis of CLL cells in response to CXCL13.
Species:  Human
Tissue:  CLL cells.
Response measured:  Chemotaxis.
References:  7
Measurement of chemotaxis of CXCR5 transduced dendritic cells.
Species:  Mouse
Tissue:  Bone marrow derived dendritic cells.
Response measured:  Chemotaxis.
References:  44
Measurement of MAP kinase activation upon CXCL13 stimulation.
Species:  Human
Tissue:  CLL cells.
Response measured:  Activation of p44/42 MAPK.
References:  7
Measurement of actin polymerization upon CXCL13 stimulation.
Species:  Human
Tissue:  CLL cells.
Response measured:  F-actin increase.
References:  7
Physiological Functions Click here for help
Chemotaxis.
Species:  Human
Tissue:  Blood B lymphocytes.
References:  25
B cell migration.
Species:  Mouse
Tissue:  In vivo (spleen).
References:  14
Lymphoid organ organogenesis and organization (in cooperation with CCR7).
Species:  Mouse
Tissue:  Lymph nodes and Peyer's patches.
References:  30
CXCR5 signaling enhances antigen encounter and B cell receptor-triggered B cell activation.
Species:  Mouse
Tissue:  B cells.
References:  41
CXCR5-mediated induction of LTα1β2 expression by B cells enhances CXCL13 production and maturation of follicular dendritic cells.
Species:  Mouse
Tissue:  B cells.
References:  2
CXCR5 mediates, in cooperation with CXCR4, the organization of the germinal center into light and dark zone.
Species:  Mouse
Tissue:  Spleen.
References:  1
Balance of CXCR5 to CCR7 expression on B cells determines B cell position in secondary lymphoid organs in response to antigen.
Species:  Mouse
Tissue:  Secondary lymphoid organs.
References:  34
CXCR5 mediates follicular homing of CD4+ T follicular helper cells enabling them to provide B cell help.
Species:  Mouse
Tissue:  Spleen.
References:  16
CXCR5 signaling activates α4β1 integrin on CD4+ CD3- lymphoid tissue inducer cells.
Species:  Mouse
Tissue:  Peyer's patches.
References:  13
CXCR5 regulates hippocampal neurogenesis.
Species:  Mouse
Tissue:  Brain.
References:  40
Physiological Consequences of Altering Gene Expression Click here for help
CXCR5-/- CCR7-/- double knockout mice lack peripheral lymph nodes.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  30
CXCR5 receptor knockout mice and CXCR5-/- CCR7-/- double knockout mice exhibit decreased B cell levels in the peritoneal cavity as well as reduced IgM responses to administration of Streptococcus pneumoniae.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  19
CXCR5 receptor knockout mice almost completely lack inguinal, paraaortic, axillary, brachial, popliteal and deep cervical lymph nodes and have fewer and abnormal Peyer's patches, impaired migration of lymphocytes into splenic follicles causing altered primary lymphoid follicles, and no functional germinal center development in the spleen.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2,14
CXCR5-/- mice display a severely impaired antibody response to antigen with limited availability.
Species:  Mouse
Tissue:  Spleen.
Technique:  Gene knock-outs.
References:  20
Severely impaired organization of splenic follicles in CXCR5-/- mice. B cells co-localize with follicular dendritic cells aberrantly around marginal zone sinuses.
Species:  Mouse
Tissue:  Spleen.
Technique:  Gene knock-outs.
References:  43
Accelerated neuroinvasion of prions in CXCR5-/- mice.
Species:  Mouse
Tissue:  Spleen.
Technique:  Gene knock-outs.
References:  32
CXCR5-/- mice develop ectopic germinal centers in the splenic PALS.
Species:  Mouse
Tissue:  Spleen.
Technique:  Gene knock-outs.
References:  43
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0003156 abnormal leukocyte migration PMID: 8978608 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0000696 abnormal Peyer's patch morphology PMID: 8978608 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0008471 abnormal spleen primary B follicle morphology PMID: 8978608 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0008472 abnormal spleen secondary B follicle morphology PMID: 8978608 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0009630 absent axillary lymph nodes PMID: 10917533 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0009628 absent brachial lymph nodes PMID: 10917533 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0009633 absent cervical lymph nodes PMID: 10917533 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0008201 absent follicular dendritic cells PMID: 10917533 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0009622 absent inguinal lymph nodes PMID: 10917533  8978608 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0008024 absent lymph nodes PMID: 10917533 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0002831 absent Peyer's patches PMID: 8978608 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0008474 absent spleen germinal center PMID: 8978608 
Cxcr5tm1Lipp Cxcr5tm1Lipp/Cxcr5tm1Lipp
involves: 129S2/SvPas * CD-1
MGI:103567  MP:0005014 increased B cell number PMID: 8978608 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  B-cell chronic lymphocytic leukemia
Description: B-cell chronic lymphocytic leukemia (B-CLL) is a type of B-cell non-Hodgkin lymphoma.
Synonyms: B-CLL
lymphoplasmacytic leukemia
small lymphocytic lymphoma
OMIM: 151400
Orphanet: ORPHA67038
Role: 
References:  7
Disease:  Breast cancer
Disease Ontology: DOID:1612
OMIM: 114480
Role: 
References:  5
Disease:  Colorectal cancer
Disease Ontology: DOID:9256
OMIM: 114500
References:  27,33
Disease:  Opsoclonus-myoclonus syndrome
Description: Opsoclonus myoclonus syndrome (OMS) is a rare pediatric brain inflammatory disease of paraneoplastic, parainfectious or idiopathic origin, characterized by opsoclonus, myoclonus, ataxia and behavioural and sleep disorders.
Synonyms: dancing eye syndrome
Kinsbourne syndrome
OMA syndrome
paraneoplastic opsoclonus-myoclonus
paraneoplastic opsoclonus-myoclonus-ataxia
Orphanet: ORPHA1183
References:  31
Disease:  Prostate cancer
Disease Ontology: DOID:10283
OMIM: 176807
References:  38
Disease:  Rheumatoid arthritis
Disease Ontology: DOID:7148
OMIM: 180300
References:  37
Disease:  Sézary syndrome
Description: Sézary syndrome (SS) is an aggressive form of cutaneous T-cell lymphoma characterized by a triad of erythroderma, lymphadenopathy and circulating atypical lymphocytes.
Synonyms: Sézary lymphoma
Orphanet: ORPHA3162
Role: 
References:  8
Disease:  Sjögren's syndrome
Description: Sjögren's syndrome is a chronic autoimmune disorder characterized by the triad of dry eyes (keratoconjunctiva sicca), sensation of oral dryness (xerostomia) and/or swelling of the salivary glands secondary to lymphocytic infiltration and destruction of the exocrine glands.
Synonyms: Sicca syndrome
Sjögren-Gougerot syndrome
Orphanet: ORPHA378
References:  15
Disease:  Systemic lupus erythematosus
Description: SLE is a complex autoimmune disease that is characterised by inflammation of various connective tissues, and symptoms include dermatitis, arthritis, inflammation of the kidneys (glomerulonephritis), vasculitis, inflammation of the tissue surrounding the heart, and seizures. It is caused by the production of autoantibodies against widely expressed nuclear, cytoplasmic, and cell surface molecules. Extracellular RNA in the circulation in combination with the presence of autoantibodies potently stimulates interferon production and immune system activation.
Disease Ontology: DOID:9074
OMIM: 152700
Orphanet: ORPHA536
References:  24
Biologically Significant Variants Click here for help
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The rs6421571 CT, rs6421571 TT and rs80202369 AA genotypes show significantly increased susceptibility to Non-Hogkin lymphoma.
SNP accession: 
References:  39
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The ‘G’ allele frequency of rs3922 is significantly higher in non-responders to hepatitis B vaccine.
SNP accession: 
References:  12
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The rs6421571 CT and TT genotypes show a strong correlation with the incidence of colorectal cancer.
SNP accession: 
References:  45
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The 'C' allele of rs6421571 is strongly associated with primary biliary cirrhosis.
SNP accession: 
References:  28
Type:  Single nucleotide polymorphism
Species:  Human
Description:  The rs1790192 polymorphism is associated strongly with the risk of non-Hodgkin lymphoma, especially with the risk of follicular lymphoma.
SNP accession: 
References:  10
General Comments
CXCR5 is reported to form functional heterodimers with Epstein-Barr virus-induced receptor 2 (EBI2, GPR183), with heterodimer formation down-modulating CXCR5-mediated responses [4].

References

Show »

1. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H, Fujii N, Cyster JG. (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol, 5 (9): 943-52. [PMID:15300245]

2. Ansel KM, Ngo VN, Hyman PL, Luther SA, Förster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG. (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature, 406 (6793): 309-14. [PMID:10917533]

3. Barella L, Loetscher M, Tobler A, Baggiolini M, Moser B. (1995) Sequence variation of a novel heptahelical leucocyte receptor through alternative transcript formation. Biochem J, 309 ( Pt 3): 773-9. [PMID:7639692]

4. Barroso R, Martínez Muñoz L, Barrondo S, Vega B, Holgado BL, Lucas P, Baíllo A, Sallés J, Rodríguez-Frade JM, Mellado M. (2012) EBI2 regulates CXCL13-mediated responses by heterodimerization with CXCR5. FASEB J, 26 (12): 4841-54. [PMID:22913878]

5. Biswas S, Sengupta S, Roy Chowdhury S, Jana S, Mandal G, Mandal PK, Saha N, Malhotra V, Gupta A, Kuprash DV et al.. (2014) CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis. Breast Cancer Res Treat, 143 (2): 265-76. [PMID:24337540]

6. Brodfuehrer J, Rankin A, Edmonds J, Keegan S, Andreyeva T, Lawrence-Henderson R, Ozer J, Gao H, Bloom L, Boisvert A et al.. (2014) Quantitative analysis of target coverage and germinal center response by a CXCL13 neutralizing antibody in a T-dependent mouse immunization model. Pharm Res, 31 (3): 635-48. [PMID:24190631]

7. Bürkle A, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA. (2007) Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood, 110 (9): 3316-25. [PMID:17652619]

8. Capriotti E, Vonderheid EC, Thoburn CJ, Bright EC, Hess AD. (2007) Chemokine receptor expression by leukemic T cells of cutaneous T-cell lymphoma: clinical and histopathological correlations. J Invest Dermatol, 127 (12): 2882-92. [PMID:17597825]

9. Carlsen HS, Baekkevold ES, Johansen FE, Haraldsen G, Brandtzaeg P. (2002) B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut, 51 (3): 364-71. [PMID:12171958]

10. Charbonneau B, Wang AH, Maurer MJ, Asmann YW, Zent CS, Link BK, Ansell SM, Weiner GJ, Ozsan N, Feldman AL et al.. (2013) CXCR5 polymorphisms in non-Hodgkin lymphoma risk and prognosis. Cancer Immunol Immunother, 62 (9): 1475-84. [PMID:23812490]

11. Dobner T, Wolf I, Emrich T, Lipp M. (1992) Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt's lymphoma. Eur J Immunol, 22 (11): 2795-9. [PMID:1425907]

12. Duan Z, Chen X, Liang Z, Zeng Y, Zhu F, Long L, McCrae MA, Zhuang H, Shen T, Lu F. (2014) Genetic polymorphisms of CXCR5 and CXCL13 are associated with non-responsiveness to the hepatitis B vaccine. Vaccine, 32 (41): 5316-22. [PMID:25077417]

13. Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J. (2002) CD4+CD3- cells induce Peyer's patch development: role of alpha4beta1 integrin activation by CXCR5. Immunity, 17 (3): 363-73. [PMID:12354388]

14. Förster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell, 87 (6): 1037-47. [PMID:8978608]

15. Hansen A, Lipsky PE, Dörner T. (2007) B cells in Sjögren's syndrome: indications for disturbed selection and differentiation in ectopic lymphoid tissue. Arthritis Res Ther, 9 (4): 218. [PMID:17697366]

16. Hardtke S, Ohl L, Förster R. (2005) Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood, 106 (6): 1924-31. [PMID:15899919]

17. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24 (4): 1030-41. [PMID:16253981]

18. Huber TB, Reinhardt HC, Exner M, Burger JA, Kerjaschki D, Saleem MA, Pavenstädt H. (2002) Expression of functional CCR and CXCR chemokine receptors in podocytes. J Immunol, 168 (12): 6244-52. [PMID:12055238]

19. Höpken UE, Achtman AH, Krüger K, Lipp M. (2004) Distinct and overlapping roles of CXCR5 and CCR7 in B-1 cell homing and early immunity against bacterial pathogens. J Leukoc Biol, 76 (3): 709-18. [PMID:15197239]

20. Junt T, Fink K, Förster R, Senn B, Lipp M, Muramatsu M, Zinkernagel RM, Ludewig B, Hengartner H. (2005) CXCR5-dependent seeding of follicular niches by B and Th cells augments antiviral B cell responses. J Immunol, 175 (11): 7109-16. [PMID:16301613]

21. Kaiser E, Förster R, Wolf I, Ebensperger C, Kuehl WM, Lipp M. (1993) The G protein-coupled receptor BLR1 is involved in murine B cell differentiation and is also expressed in neuronal tissues. Eur J Immunol, 23 (10): 2532-9. [PMID:8405054]

22. Kanbe K, Shimizu N, Soda Y, Takagishi K, Hoshino H. (1999) A CXC chemokine receptor, CXCR5/BLR1, is a novel and specific coreceptor for human immunodeficiency virus type 2. Virology, 265 (2): 264-73. [PMID:10600598]

23. Kouba M, Vanetti M, Wang X, Schäfer M, Höllt V. (1993) Cloning of a novel putative G-protein-coupled receptor (NLR) which is expressed in neuronal and lymphatic tissue. FEBS Lett, 321 (2-3): 173-8. [PMID:8386678]

24. Lee HT, Shiao YM, Wu TH, Chen WS, Hsu YH, Tsai SF, Tsai CY. (2010) Serum BLC/CXCL13 concentrations and renal expression of CXCL13/CXCR5 in patients with systemic lupus erythematosus and lupus nephritis. J Rheumatol, 37 (1): 45-52. [PMID:19955043]

25. Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B. (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med, 187 (4): 655-60. [PMID:9463416]

26. Lisignoli G, Toneguzzi S, Piacentini A, Cattini L, Lenti A, Tschon M, Cristino S, Grassi F, Facchini A. (2003) Human osteoblasts express functional CXC chemokine receptors 3 and 5: activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and beta-N-acetylhexosaminidase release. J Cell Physiol, 194 (1): 71-9. [PMID:12447991]

27. Meijer J, Zeelenberg IS, Sipos B, Roos E. (2006) The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res, 66 (19): 9576-82. [PMID:17018614]

28. Mells GF, Floyd JA, Morley KI, Cordell HJ, Franklin CS, Shin SY, Heneghan MA, Neuberger JM, Donaldson PT, Day DB et al.. (2011) Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet, 43 (4): 329-32. [PMID:21399635]

29. Müller G, Lipp M. (2001) Signal transduction by the chemokine receptor CXCR5: structural requirements for G protein activation analyzed by chimeric CXCR1/CXCR5 molecules. Biol Chem, 382 (9): 1387-97. [PMID:11688722]

30. Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, Bernhardt G, Pabst O, Förster R. (2003) Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med, 197 (9): 1199-204. [PMID:12732661]

31. Pranzatelli MR, Tate ED, McGee NR, Travelstead AL, Ransohoff RM, Ness JM, Colliver JA. (2012) Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. J Neuroimmunol, 243 (1-2): 81-8. [PMID:22264765]

32. Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M, Heppner FL, Fu YX, Lipp M, Aguzzi A. (2003) Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature, 425 (6961): 957-62. [PMID:14562059]

33. Qi XW, Xia SH, Yin Y, Jin LF, Pu Y, Hua D, Wu HR. (2014) Expression features of CXCR5 and its ligand, CXCL13 associated with poor prognosis of advanced colorectal cancer. Eur Rev Med Pharmacol Sci, 18 (13): 1916-24. [PMID:25010623]

34. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M, Förster R, Cyster JG. (2002) Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature, 416 (6876): 94-9. [PMID:11882900]

35. Saito R, Onodera H, Tago H, Suzuki Y, Shimizu M, Matsumura Y, Kondo T, Itoyama Y. (2005) Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J Neuroimmunol, 170 (1-2): 172-8. [PMID:16214223]

36. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med, 192 (11): 1553-62. [PMID:11104798]

37. Schmutz C, Hulme A, Burman A, Salmon M, Ashton B, Buckley C, Middleton J. (2005) Chemokine receptors in the rheumatoid synovium: upregulation of CXCR5. Arthritis Res Ther, 7 (2): R217-29. [PMID:15743468]

38. Singh S, Singh R, Singh UP, Rai SN, Novakovic KR, Chung LW, Didier PJ, Grizzle WE, Lillard Jr JW. (2009) Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines. Int J Cancer, 125 (10): 2288-95. [PMID:19610059]

39. Song H, Tong D, Cha Z, Bai J. (2012) C-X-C chemokine receptor type 5 gene polymorphisms are associated with non-Hodgkin lymphoma. Mol Biol Rep, 39 (9): 8629-35. [PMID:22707196]

40. Stuart MJ, Corrigan F, Baune BT. (2014) Knockout of CXCR5 increases the population of immature neural cells and decreases proliferation in the hippocampal dentate gyrus. J Neuroinflammation, 11: 31. [PMID:24528805]

41. Sáez de Guinoa J, Barrio L, Mellado M, Carrasco YR. (2011) CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics. Blood, 118 (6): 1560-9. [PMID:21659539]

42. Sørensen TL, Roed H, Sellebjerg F. (2002) Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis. J Neuroimmunol, 122 (1-2): 125-31. [PMID:11777551]

43. Voigt I, Camacho SA, de Boer BA, Lipp M, Förster R, Berek C. (2000) CXCR5-deficient mice develop functional germinal centers in the splenic T cell zone. Eur J Immunol, 30 (2): 560-7. [PMID:10671212]

44. Wu MT, Hwang ST. (2002) CXCR5-transduced bone marrow-derived dendritic cells traffic to B cell zones of lymph nodes and modify antigen-specific immune responses. J Immunol, 168 (10): 5096-102. [PMID:11994462]

45. Xing J, Li X, Sui J, Cao G, Fu C. (2014) C-X-C chemokine receptor type 5 gene polymorphism affects gene expression in CD4+ T cells and is associated with increased risk of colorectal cancer. Tumour Biol, 35 (8): 7929-34. [PMID:24833093]

Contributors

Show »

How to cite this page