Top ▲

Cav1.1

Click here for help

Target id: 528

Nomenclature: Cav1.1

Family: Voltage-gated calcium channels (CaV)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 4 1873 1q32.1 CACNA1S calcium voltage-gated channel subunit alpha1 S 14
Mouse 24 4 1880 1 59.55 cM Cacna1s calcium channel, voltage-dependent, L type, alpha 1S subunit 8
Rat 24 4 1850 13 Cacna1s calcium voltage-gated channel subunit alpha1 S 10
Previous and Unofficial Names Click here for help
alpha-1S skeletal muscle L-type Ca2+ channel | CACNL1A3 | HOKPP | ROB1 | voltage-dependent L-type calcium channel subunit alpha-1S | voltage-gated calcium channel subunit alpha Cav1.1 | DHPR alpha1s | fmd | mdg | CCHL1A3 | HOKPP1 | TTPP1 | alpha-1 polypeptide, isoform 3, skeletal muscle | hypoPP | skeletal muscle dihydropyridine receptor | calcium channel
Database Links Click here for help
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the mammalian voltage-gated calcium channel Cav1.1 complex at near atomic resolution.
PDB Id:  5GJV
Resolution:  3.6Å
Species:  Rabbit
References:  55-56
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
γ1 27
β1a 43
α 15,37
Other Associated Proteins
Name References
A kinase-anchoring protein (AKAP15) 26
Stac3 18
Functional Characteristics Click here for help
L-type calcium current: High voltage-activated, very slow voltage dependent inactivation
Ion Selectivity and Conductance Click here for help
Species:  None
Rank order:  Ca2+ > Sr2+ > Mg2+ > Ba2+ [13.0 - 17.0 pS]
References:  12-13,21,40
Voltage Dependence Click here for help
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  8.0 – 14.0 60.0 – 67.0 12,21 Skeletal muscle myotubes. Mouse
Inactivation  -8.0 - 21
Comments  Data are for Ca2+ currents; inactivation during depolarisation pulses is slow (about 40% inactivation after 5 s).

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
BAYK 8644 Small molecule or natural product Click here for species-specific activity table Mm - - - 5x10-7 - 1x10-5 -20.0 – -10.0 22,32
Conc range: 5x10-7 - 1x10-5 M [22,32]
Holding voltage: -20.0 – -10.0 mV
FPL64176 Small molecule or natural product Click here for species-specific activity table Hs - ~7.8 pEC50 - -
pEC50 ~7.8 (EC50 ~1.6x10-8 M)
(-)-(S)-BayK8644 Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs - ~7.8 pEC50 - -
pEC50 ~7.8 (EC50 ~1.73x10-8 M)
SZ(+)-(S)-202-791 Small molecule or natural product Click here for species-specific activity table Hs - - - - -
View species-specific activator tables
Activator Comments
BAYK 8644 stimulates currents at μM concentrations but, unlike inhibitory dihydropyridines, does not block charge movement [22,32,40].
Gating inhibitors Click here for help
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
[3H](+)-isradipine Small molecule or natural product Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Antagonist 9.7 pKd - - 11
pKd 9.7 [11]
[3H](+)-isradipine Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 9.2 pKd - - 38
pKd 9.2 [38]
[3H](-)devapamil Small molecule or natural product Ligand is labelled Ligand is radioactive Oc Antagonist 8.2 – 8.7 pKd - - 23-24
pKd 8.2 – 8.7 [23-24]
[3H](+)-cis-diltiazem Small molecule or natural product Ligand is labelled Ligand is radioactive Oc Antagonist 6.5 – 7.4 pKd - - 24,41
pKd 6.5 – 7.4 [24,41]
(+)-isradipine Small molecule or natural product Rn Antagonist 6.7 – 8.2 pIC50 - -50.0 – -80.0 2
pIC50 6.7 – 8.2 [2]
Holding voltage: -50.0 – -80.0 mV
nifedipine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Antagonist 6.3 pIC50 - -90.0 32
pIC50 6.3 [32]
Holding voltage: -90.0 mV
nitrendipine Small molecule or natural product Approved drug Rn Antagonist 6.0 pIC50 - -80.0 2
pIC50 6.0 [2]
Holding voltage: -80.0 mV
nimodipine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist ~6.0 pIC50 - -70.0
pIC50 ~6.0 (IC50 ~1x10-6 M)
Holding voltage: -70.0 mV
View species-specific gating inhibitor tables
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
verapamil Small molecule or natural product Approved drug Primary target of this compound Oc Antagonist ~5.0 pIC50 - 100.0 53
pIC50 ~5.0 (IC50 ~1x10-5 M) [53]
Holding voltage: 100.0 mV
Cd2+ Rn Antagonist 4.3 pIC50 - -80.0 2
pIC50 4.3 [2]
Holding voltage: -80.0 mV
diltiazem Small molecule or natural product Approved drug Primary target of this compound Ligand has a PDB structure Oc Antagonist 4.2 pIC50 - -100.0 53
pIC50 4.2 (IC50 6.31x10-5 M) [53]
Holding voltage: -100.0 mV
View species-specific channel blocker tables
Channel Blocker Comments
Amlodopine, isradipine, nifedipine, nitrendipine, and nimodipine are examples of dihydropyridine calcium channel antagonists. Verapamil is a phenylalkylamine calcium channel blocker, and diltiazem is a benzothiazepine calcium channel blocker.
Tissue Distribution Click here for help
Basal ganglia (caudate nucleus, pallidum > putamen), cerebral cortex, hippocampus, substantia nigra, spinal cord.
Species:  Human
Technique:  RT-PCR
References:  48
Skeletal muscle (predominantly transverse tubules) > bone marrow
Species:  Human
Technique:  Northern Blot
References:  48
Lymphocytes.
Species:  Mouse
Technique:  RT-PCR, immunohistochemistry
References:  35
Embryonic muscle, myotubes.
Species:  Mouse
Technique:  RT-PCR
References:  52
Cerebrum, cerebellum, spinal cord, dorsal root ganglia, lung, small intestine, testis.
Species:  Rat
Technique:  RT-PCR
References:  48
Skeletal muscle > cerebrum, hippocampus, cerebellum, spinal cord, spleen, small intestine, lung.
Species:  Rat
Technique:  Northern Blot
References:  48
Tissue Distribution Comments
On the protein level Cav1.1 channel expression was demonstrated only in skeletal muscle and mRNA expression has been described by one research group in rat and human brain [48], but these findings have not been reproduced by other groups so far [45].
Functional Assays Click here for help
Patch-clamp, two-electrode voltage-clamp.
Species:  Mouse
Tissue:  Skeletal muscle fibres.
Response measured:  Whole cell current, charge movement.
References:  3,12-13,21,32
Measurement of intracellular calcium transients.
Species:  Mouse
Tissue:  Skeletal muscle.
Response measured:  Fluorescence of calcium-sensitive indicators.
References:  17
Patch-clamp measurement of currents in normal and γ1-deficient channels.
Species:  Mouse
Tissue:  Skeletal muscle myotubes.
Response measured:  Single channel and whole cell currents.
References:  13,21
Physiological Functions Click here for help
Excitation contraction coupling (ECC)
Species:  Mouse
Tissue:  Skeletal muscle.
References:  44,49
Neuromuscular synaptic patterning
Species:  Mouse
Tissue:  Skeletal muscle
References:  9,19
Physiological Functions Comments
ECC is absent from dysgenic skeletal muscle cells lacking dihydropyridine receptors (Cav1.1 α1 subunits) and is restored by transfection of these cells with Cav1.1 α1 subunits [44,49]; fast voltage sensor movement of channel triggers opening of ryanodine receptor-mediated calcium release; channel pore opens only slowly and role of calcium entry for physiological function is not clear.
Physiological Consequences of Altering Gene Expression Click here for help
Muscular dysgenesis
Species:  Mouse
Tissue:  Skeletal muscle
Technique:  Spontaneous mutation (frameshift F1317L onward)
References:  40
Hypokalemic periodic paralysis phenotype
Species:  Mouse
Tissue:  Skeletal muscle
Technique:  Homologous recombination; mutant mouse model of hypokalemic periodic paralysis (R528H)
References:  54
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0002114 abnormal axial skeleton morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000163 abnormal cartilage morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0003048 abnormal cervical vertebrae morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0002279 abnormal diaphragm morphology PMID: 6692971  6692972 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: 129P1/ReJ * STOCK T/t<4>
MGI:88294  MP:0002279 abnormal diaphragm morphology PMID: 7286424 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000961 abnormal dorsal root ganglion morphology PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: 129P1/ReJ * STOCK T/t<4>
MGI:88294  MP:0005584 abnormal enzyme/coenzyme activity PMID: 7286424  8666981 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004198 abnormal fetal size PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0002932 abnormal joint morphology PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000458 abnormal mandible morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004595 abnormal mandibular condyloid process morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004594 abnormal mandibular coronoid process morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000733 abnormal muscle development PMID: 1237429  14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: 129 * STOCK T/t<4>
MGI:88294  MP:0000733 abnormal muscle development PMID: 6708965 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004087 abnormal muscle fiber morphology PMID: 6692971  6692972 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0001052 abnormal muscle innervation PMID: 6692971 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: 129P1/ReJ * STOCK T/t<4>
MGI:88294  MP:0001052 abnormal muscle innervation PMID: 7286424 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: 129P1/ReJ * STOCK T/t<4>
MGI:88294  MP:0002108 abnormal muscle morphology PMID: 7286424 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0002106 abnormal muscle physiology PMID: 1663002 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0005269 abnormal occipital bone morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0001078 abnormal phrenic nerve morphology PMID: 6692972 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000150 abnormal rib morphology PMID: 14300095  14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004090 abnormal sarcomere morphology PMID: 8143864 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0003084 abnormal skeletal muscle fiber morphology PMID: 5041196  8143864  8462749 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0005112 abnormal spinal cord ventral horn morphology PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004174 abnormal spine curvature PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004322 abnormal sternebra morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000157 abnormal sternum morphology PMID: 14300095  14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004733 abnormal thoracic cavity PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000762 abnormal tongue morphology PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004136 abnormal tongue muscle morphology PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004703 abnormal vertebral column PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004091 abnormal Z lines PMID: 5041196  8143864 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004354 absent deltoid tuberosity PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004846 absent skeletal muscle PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004620 cervical vertebral fusion PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0009890 cleft secondary palate PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0008150 decreased diameter of long bones PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004819 decreased skeletal muscle mass PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0009907 decreased tongue size PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004089 dilated sarcoplasmic reticulum PMID: 5041196 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0001785 edema PMID: 14300095  14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004386 enlarged interparietal bone PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0003201 extremity edema PMID: 14300095  14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: 129 * STOCK T/t<4>
MGI:88294  MP:0000738 impaired muscle contractility PMID: 6708965  6708966 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0002841 impaired skeletal muscle contractility PMID: 8143864  8462749 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: 129P1/ReJ * STOCK T/t<4>
MGI:88294  MP:0002841 impaired skeletal muscle contractility PMID: 4738109 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000005 increased brown adipose tissue amount PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000160 kyphosis PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0001513 limb grasping PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004671 long ribs PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0005421 loose skin PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0002639 micrognathia PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000749 muscle degeneration PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0001404 no spontaneous movement PMID: 14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0002081 perinatal lethality PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000435 shortened head PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000088 short mandible PMID: 14300095  14300096 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004321 short sternum PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004338 small clavicle PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004343 small scapula PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0000761 thin diaphragm muscle PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004674 thin ribs PMID: 14300095 
Cacna1smdg Cacna1smdg/Cacna1smdg
involves: STOCK T/t<4>
MGI:88294  MP:0004623 thoracic vertebral fusion PMID: 14300095 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Hypokalemic periodic paralysis, type 1; HOKPP1
Synonyms: Hypokalemic periodic paralysis [Orphanet: ORPHA681] [Disease Ontology: DOID:14452]
Disease Ontology: DOID:14452
OMIM: 170400
Orphanet: ORPHA681
Role: 
References:  4,20,28-29,42,47
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R528H 4,20,28
Missense Human R528G 25,46
Missense Human V876E 31
Missense Human R897S 7,46
Missense Human R900S 25
Missense Human R900G 34
Missense Human H916Q 33
Missense Human R1239G 42
Missense Human R1239H 20,42
Disease:  Malignant hyperthermia, susceptibility to, 5
Synonyms: Malignant hyperthermia [Orphanet: ORPHA423] [Disease Ontology: DOID:8545]
Disease Ontology: DOID:8545
OMIM: 601887
Orphanet: ORPHA423
Role: 
References:  29,36,47
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R174W 5
Missense Human R1086H 36
Missense Human R1086C 1,46
Missense Human R1096S 51
Missense Human T1354S 39
Disease:  Normokalemic periodic paralysis
OMIM: 170600
Orphanet: ORPHA680
Comments: 
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R1242G 16
Disease:  Thyrotoxic periodic paralysis, susceptibility to, 1; TTPP1
OMIM: 188580
Orphanet: ORPHA79102
Clinically-Relevant Mutations and Pathophysiology Comments
For details of the mechanism of action of CACNA1S mutations see references [6,30,46].
Biologically Significant Variants Click here for help
Type:  Frameshift mutation
Species:  Mouse
Description:  A frameshift mutation in mice results in muscular dysgenesis
Amino acid change:  F1317L onward
References:  8
Type:  Splice variant
Species:  Mouse
Description:  Cav1.1 α1s lacking exon 29.

Physiological effect: 30 mV more negative activation voltage-dependence, increased open probability, robust calcium influx, accelerated current kinetics; main splice variant expressed during muscle development; exon skipping correlates with muscle weakness in myotonic dystrophy type 1
Nucleotide accession: 
Protein accession: 
References:  50,52

References

Show »

1. Baur CP, Klingler W, Jurkat-Rott K, Froeba G, Schoch E, Marx T, Georgieff M, Lehmann-Horn F. (2000) Xenon does not induce contracture in human malignant hyperthermia muscle. Br J Anaesth, 85 (5): 712-6. [PMID:11094586]

2. Beam KG, Knudson CM. (1988) Calcium currents in embryonic and neonatal mammalian skeletal muscle. J Gen Physiol, 91 (6): 781-98. [PMID:2458429]

3. Beam KG, Knudson CM. (1988) Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle. J Gen Physiol, 91 (6): 799-815. [PMID:2458430]

4. Caciotti A, Morrone A, Domenici R, Donati MA, Zammarchi E. (2003) Severe prognosis in a large family with hypokalemic periodic paralysis. Muscle Nerve, 27 (2): 165-9. [PMID:12548523]

5. Carpenter D, Ringrose C, Leo V, Morris A, Robinson RL, Halsall PJ, Hopkins PM, Shaw MA. (2009) The role of CACNA1S in predisposition to malignant hyperthermia. BMC Med Genet, 10: 104. [PMID:19825159]

6. Catterall WA. (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron, 67 (6): 915-28. [PMID:20869590]

7. Chabrier S, Monnier N, Lunardi J. (2008) Early onset of hypokalaemic periodic paralysis caused by a novel mutation of the CACNA1S gene. J Med Genet, 45 (10): 686-8. [PMID:18835861]

8. Chaudhari N. (1992) A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice. J Biol Chem, 267 (36): 25636-9. [PMID:1281468]

9. Chen F, Liu Y, Sugiura Y, Allen PD, Gregg RG, Lin W. (2011) Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat Neurosci, 14 (5): 570-7. [PMID:21441923]

10. Chin H, Krall M, Kim HL, Kozak CA, Mock B. (1992) The gene for the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1. Genomics, 14 (4): 1089-91. [PMID:1335956]

11. Desnuelle C, Liot D, Serratrice G, Lombet A. (1985) Biochemical characterization of plasma membrane isolated from human skeletal muscle. FEBS Lett, 188 (2): 222-6. [PMID:2411596]

12. Dirksen RT, Beam KG. (1995) Single calcium channel behavior in native skeletal muscle. J Gen Physiol, 105 (2): 227-47. [PMID:7539048]

13. Dirksen RT, Nakai J, Gonzalez A, Imoto K, Beam KG. (1997) The S5-S6 linker of repeat I is a critical determinant of L-type Ca2+ channel conductance. Biophys J, 73 (3): 1402-9. [PMID:9284307]

14. Drouet B, Garcia L, Simon-Chazottes D, Mattei MG, Guénet JL, Schwartz A, Varadi G, Pinçon-Raymond M. (1993) The gene coding for the alpha 1 subunit of the skeletal dihydropyridine receptor (Cchl1a3 = mdg) maps to mouse chromosome 1 and human 1q32. Mamm Genome, 4 (9): 499-503. [PMID:8118099]

15. Ellis SB, Williams ME, Ways NR, Brenner R, Sharp AH, Leung AT, Campbell KP, McKenna E, Koch WJ, Hui A. (1988) Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. Science, 241 (4873): 1661-4. [PMID:2458626]

16. Fan C, Lehmann-Horn F, Weber MA, Bednarz M, Groome JR, Jonsson MK, Jurkat-Rott K. (2013) Transient compartment-like syndrome and normokalaemic periodic paralysis due to a Cav1.1 mutation. Brain, 136 (Pt 12): 3775-86. [PMID:24240197]

17. Flucher BE, Andrews SB, Fleischer S, Marks AR, Caswell A, Powell JA. (1993) Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. J Cell Biol, 123 (5): 1161-74. [PMID:8245124]

18. Flucher BE, Campiglio M. (2019) STAC proteins: The missing link in skeletal muscle EC coupling and new regulators of calcium channel function. Biochim Biophys Acta Mol Cell Res, 1866 (7): 1101-1110. [PMID:30543836]

19. Flucher BE, Tuluc P. (2011) A new L-type calcium channel isoform required for normal patterning of the developing neuromuscular junction. Channels (Austin), 5 (6): 518-24. [PMID:21993196]

20. Fouad G, Dalakas M, Servidei S, Mendell JR, Van den Bergh P, Angelini C, Alderson K, Griggs RC, Tawil R, Gregg R et al.. (1997) Genotype-phenotype correlations of DHP receptor alpha 1-subunit gene mutations causing hypokalemic periodic paralysis. Neuromuscul Disord, 7 (1): 33-8. [PMID:9132138]

21. Freise D, Held B, Wissenbach U, Pfeifer A, Trost C, Himmerkus N, Schweig U, Freichel M, Biel M, Hofmann F et al.. (2000) Absence of the gamma subunit of the skeletal muscle dihydropyridine receptor increases L-type Ca2+ currents and alters channel inactivation properties. J Biol Chem, 275 (19): 14476-81. [PMID:10799530]

22. Glossmann H, Striessnig J. (1990) Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol, 114: 1-105. [PMID:2155469]

23. Goll A, Ferry DR, Striessnig J, Schober M, Glossmann H. (1984) (-)-[3H]Desmethoxyverapamil, a novel Ca2+ channel probe. Binding characteristics and target size analysis of its receptor in skeletal muscle. FEBS Lett, 176 (2): 371-7. [PMID:6092142]

24. Hagiwara M, Adachi-Akahane S, Nagao T. (1997) High-affinity binding of DTZ323, a novel derivative of diltiazem, to rabbit skeletal muscle L-type Ca++ channels. J Pharmacol Exp Ther, 281 (1): 173-9. [PMID:9103495]

25. Hirano M, Kokunai Y, Nagai A, Nakamura Y, Saigoh K, Kusunoki S, Takahashi MP. (2011) A novel mutation in the calcium channel gene in a family with hypokalemic periodic paralysis. J Neurol Sci, 309 (1-2): 9-11. [PMID:21855088]

26. Hulme JT, Ahn M, Hauschka SD, Scheuer T, Catterall WA. (2002) A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem, 277 (6): 4079-87. [PMID:11733497]

27. Jay SD, Ellis SB, McCue AF, Williams ME, Vedvick TS, Harpold MM, Campbell KP. (1990) Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 248 (4954): 490-2. [PMID:2158672]

28. Jurkat-Rott K, Lehmann-Horn F, Elbaz A, Heine R, Gregg RG, Hogan K, Powers PA, Lapie P, Vale-Santos JE, Weissenbach J et al.. (1994) A calcium channel mutation causing hypokalemic periodic paralysis. Hum Mol Genet, 3 (8): 1415-9. [PMID:7987325]

29. Jurkat-Rott K, Lerche H, Lehmann-Horn F. (2002) Skeletal muscle channelopathies. J Neurol, 249 (11): 1493-502. [PMID:12420087]

30. Jurkat-Rott K, Weber MA, Fauler M, Guo XH, Holzherr BD, Paczulla A, Nordsborg N, Joechle W, Lehmann-Horn F. (2009) K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci USA, 106 (10): 4036-41. [PMID:19225109]

31. Ke T, Gomez CR, Mateus HE, Castano JA, Wang QK. (2009) Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a South American family. J Hum Genet, 54 (11): 660-4. [PMID:19779499]

32. Lamb GD, Walsh T. (1987) Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J Physiol (Lond.), 393: 595-617. [PMID:2451745]

33. Li FF, Li QQ, Tan ZX, Zhang SY, Liu J, Zhao EY, Yu GC, Zhou J, Zhang LM, Liu SL. (2012) A novel mutation in CACNA1S gene associated with hypokalemic periodic paralysis which has a gender difference in the penetrance. J Mol Neurosci, 46 (2): 378-83. [PMID:21845430]

34. Matthews E, Labrum R, Sweeney MG, Sud R, Haworth A, Chinnery PF, Meola G, Schorge S, Kullmann DM, Davis MB et al.. (2009) Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology, 72 (18): 1544-7. [PMID:19118277]

35. Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, McMahon-Pratt D, Marchesi VT, Flavell RA. (2008) A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity, 28 (1): 64-74. [PMID:18191595]

36. Monnier N, Procaccio V, Stieglitz P, Lunardi J. (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet, 60 (6): 1316-25. [PMID:9199552]

37. Obermair GJ, Kugler G, Baumgartner S, Tuluc P, Grabner M, Flucher BE. (2005) The Ca2+ channel alpha2delta-1 subunit determines Ca2+ current kinetics in skeletal muscle but not targeting of alpha1S or excitation-contraction coupling. J Biol Chem, 280 (3): 2229-37. [PMID:15536090]

38. Ogawa T, Kashiwagi A, Kikkawa R, Shigeta Y. (1995) Increase of voltage-sensitive calcium channels and calcium accumulation in skeletal muscles of streptozocin-induced diabetic rats. Metab Clin Exp, 44 (11): 1455-61. [PMID:7476334]

39. Pirone A, Schredelseker J, Tuluc P, Gravino E, Fortunato G, Flucher BE, Carsana A, Salvatore F, Grabner M. (2010) Identification and functional characterization of malignant hyperthermia mutation T1354S in the outer pore of the Cavalpha1S-subunit. Am J Physiol, Cell Physiol, 299 (6): C1345-54. [PMID:20861472]

40. Pizarro G, Fitts R, Uribe I, Ríos E. (1989) The voltage sensor of excitation-contraction coupling in skeletal muscle. Ion dependence and selectivity. J Gen Physiol, 94 (3): 405-28. [PMID:2481710]

41. Prinz H, Striessnig J. (1993) Ligand-induced accelerated dissociation of (+)-cis-diltiazem from L-type Ca2+ channels is simply explained by competition for individual attachment points. J Biol Chem, 268 (25): 18580-5. [PMID:8395510]

42. Ptácek LJ, Tawil R, Griggs RC, Engel AG, Layzer RB, Kwieciński H, McManis PG, Santiago L, Moore M, Fouad G et al.. (1994) Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell, 77 (6): 863-8. [PMID:8004673]

43. Ruth P, Röhrkasten A, Biel M, Bosse E, Regulla S, Meyer HE, Flockerzi V, Hofmann F. (1989) Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 245 (4922): 1115-8. [PMID:2549640]

44. Ríos E, Pizarro G, Stefani E. (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu Rev Physiol, 54: 109-33. [PMID:1562172]

45. Sinnegger-Brauns MJ, Huber IG, Koschak A, Wild C, Obermair GJ, Einzinger U, Hoda JC, Sartori SB, Striessnig J. (2009) Expression and 1,4-dihydropyridine-binding properties of brain L-type calcium channel isoforms. Mol Pharmacol, 75 (2): 407-14. [PMID:19029287]

46. Striessnig J, Bolz HJ, Koschak A. (2010) Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch, 460 (2): 361-74. [PMID:20213496]

47. Striessnig J, Hoda JC, Koschak A, Zaghetto F, Müllner C, Sinnegger-Brauns MJ, Wild C, Watschinger K, Trockenbacher A, Pelster G. (2004) L-type Ca2+ channels in Ca2+ channelopathies. Biochem Biophys Res Commun, 322 (4): 1341-6. [PMID:15336981]

48. Takahashi Y, Jeong SY, Ogata K, Goto J, Hashida H, Isahara K, Uchiyama Y, Kanazawa I. (2003) Human skeletal muscle calcium channel alpha1S is expressed in the basal ganglia: distinctive expression pattern among L-type Ca2+ channels. Neurosci Res, 45 (1): 129-37. [PMID:12507731]

49. Tanabe T, Beam KG, Powell JA, Numa S. (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature, 336 (6195): 134-9. [PMID:2903448]

50. Tang ZZ, Yarotskyy V, Wei L, Sobczak K, Nakamori M, Eichinger K, Moxley RT, Dirksen RT, Thornton CA. (2012) Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum Mol Genet, 21 (6): 1312-24. [PMID:22140091]

51. Toppin PJ, Chandy TT, Ghanekar A, Kraeva N, Beattie WS, Riazi S. (2010) A report of fulminant malignant hyperthermia in a patient with a novel mutation of the CACNA1S gene. Can J Anaesth, 57 (7): 689-93. [PMID:20431982]

52. Tuluc P, Molenda N, Schlick B, Obermair GJ, Flucher BE, Jurkat-Rott K. (2009) A CaV1.1 Ca2+ channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle. Biophys J, 96 (1): 35-44. [PMID:19134469]

53. Walsh KB, Bryant SH, Schwartz A. (1986) Effect of calcium antagonist drugs on calcium currents in mammalian skeletal muscle fibers. J Pharmacol Exp Ther, 236 (2): 403-7. [PMID:2418195]

54. Wu F, Mi W, Hernández-Ochoa EO, Burns DK, Fu Y, Gray HF, Struyk AF, Schneider MF, Cannon SC. (2012) A calcium channel mutant mouse model of hypokalemic periodic paralysis. J Clin Invest, 122 (12): 4580-91. [PMID:23187123]

55. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N. (2016) Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution. Nature, 537 (7619): 191-196. [PMID:27580036]

56. Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, Yan N. (2019) Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca2+ Channel. Cell, 177 (6): 1495-1506.e12. [PMID:31150622]

Contributors

Show »

How to cite this page