Top ▲

TRPM7

Click here for help

Target id: 499

Nomenclature: TRPM7

Family: Transient Receptor Potential channels (TRP), ChaK subfamily

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 1865 15q21.2 TRPM7 transient receptor potential cation channel subfamily M member 7
Mouse 6 1 1863 2 F1 Trpm7 transient receptor potential cation channel, subfamily M, member 7
Rat 6 1 1862 3q36 Trpm7 transient receptor potential cation channel, subfamily M, member 7
Previous and Unofficial Names Click here for help
LTRPC7 | TRP-PLIK | MagNum | MIC | long transient receptor potential channel 7 | transient receptor potential-phospholipase C-interacting kinase | transient receptor potential-related protein, ChaK | Channel-kinase 1 | ChaK1 | Ltpr7 | transient receptor potential cation channel
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the atypical protein kinase domain of a TRP Ca-channel, CHAK (AMP-PNP complex).
PDB Id:  1IA9
Ligand:  AMP-PNP
Resolution:  2.0Å
Species:  Mouse
References:  38
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the atypical protein kinase domain of a TRP Ca-channel, CHAK (Apo).
PDB Id:  1IAJ
Resolution:  2.8Å
Species:  Mouse
References:  38
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
TRPM6 5,18
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
myosin IIA heavy chain 6
snapin 18
PLC-β 29
Functional Characteristics Click here for help
γ = 40-105 pS at negative and positive potentials respectively; conducts mono-and di-valent cations with a preference for monovalents (PCa/PNa = 0.34); conductance sequence Ni2+ > Zn2+ > Ba2+ = Mg2+ > Ca2+ = Mn2+ > Sr2+ > Cd2+; outward rectification, decreased by removal of extracellular divalent cations; inhibited by intracellular Mg2+, Ba2+, Sr2+, Zn2+, Mn2+ and Mg.ATP (disputed); activated by and intracellular alkalinization; sensitive to osmotic gradients
Ion Selectivity and Conductance Click here for help
Species:  Mouse
Rank order:  Zn2+ > Ni2+ > Ba2+ > Mg2+ > Mn2+ > Sr2+ > Cd2+ > Ca2+
References:  23
Ion Selectivity and Conductance Comments
Permeability ratio: K+:Cs+:Na+:Ca2+ = 1.1:1:0.97:0.34.
Single channel conductance = 40-105 pS [24,29].

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
2-APB Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Activation - - > 1x10-3 - 21
Conc range: > 1x10-3 M [21]
PIP2 Small molecule or natural product Ligand is endogenous in the given species Rn Agonist - - 2x10-5 60.0 30
Conc range: 2x10-5 M [30]
Holding voltage: 60.0 mV
Extracellular H+ Click here for species-specific activity table Ligand is endogenous in the given species Hs Potentiation 4.5 pEC50 - - 13
pEC50 4.5 [13]
naltriben Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Activation - - - - 12
[12]
View species-specific activator tables
Activator Comments
TRPM7 is also activated or potentiated by intracellular alkalinisation [15], protons [13] and fluid flow [25].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
La3+ Click here for species-specific activity table Mm Antagonist - - 2x10-3 -100.0 – 100.0 29
Conc range: 2x10-3 M [29]
Holding voltage: -100.0 – 100.0 mV
spermine Small molecule or natural product Ligand has a PDB structure Rn Inhibition 5.6 pKi - -110.0 – 80.0 16
pKi 5.6 (Ki 2.3x10-6 M) Reversible, voltage dependent inhibition in RBL2H3 rats [16]
Holding voltage: -110.0 – 80.0 mV
sphingosine Small molecule or natural product Ligand has a PDB structure Mm Inhibition 6.2 pIC50 - -100.0 – 100.0 28
pIC50 6.2 (IC50 5.9x10-7 M) [28]
Holding voltage: -100.0 – 100.0 mV
fingolimod Small molecule or natural product Approved drug Click here for species-specific activity table Immunopharmacology Ligand Mm Inhibition 6.1 pIC50 - -100.0 – 100.0 28
pIC50 6.1 (IC50 7.2x10-7 M) [28]
Holding voltage: -100.0 – 100.0 mV
NS8593 Small molecule or natural product Ligand has a PDB structure Mm Inhibition 5.8 pIC50 - -100.0 – 100.0 4
pIC50 5.8 (IC50 1.6x10-6 M) [4]
Holding voltage: -100.0 – 100.0 mV
waixenicin A Small molecule or natural product Mm Inhibition 4.8 – 5.2 pIC50 - -80.0 – 80.0 39
pIC50 4.8 – 5.2 (IC50 1.6x10-5 – 7x10-6 M) Irreversible, [Mg2+]i dependent: IC50=7µM in the absence of free [Mg2+]i), IC50=16µM at 700µM free [Mg2+]i), [39]
Holding voltage: -80.0 – 80.0 mV
2-APB Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Inhibition 3.8 pIC50 - -100.0 – 100.0 21
pIC50 3.8 (IC50 1.78x10-4 M) Reversible inhibition [21]
Holding voltage: -100.0 – 100.0 mV
carvacrol Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Mm Inhibition 3.5 pIC50 - -100.0 – 100.0 27
pIC50 3.5 (IC50 3x10-4 M) Reversible inhibition [27]
Holding voltage: -100.0 – 100.0 mV
nafamostat Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Hs Inhibition 3.2 pIC50 - -100.0 – 100.0 3
pIC50 3.2 (IC50 6.17x10-4 M) Reversible inhibition, voltage and divalent cation dependent [3]
Holding voltage: -100.0 – 100.0 mV
Mg2+ Click here for species-specific activity table Mm Antagonist 2.5 pIC50 - 80.0 24
pIC50 2.5 (IC50 3.2x10-3 M) Reversible inhibition [24]
Holding voltage: 80.0 mV
View species-specific channel blocker tables
Channel Blocker Comments
Also blocked by polyvalent cations e.g. Gd3+ (irreversible inhibition) and La3+ (inward current, partially reversible) [15,23]. 2-APB acts as a channel blocker in the µM range.
Immunopharmacology Comments
Expressed on chicken B cells, mouse T cells, chicken monocytes/macrophages, and human mast cells [26].
Cell Type Associations
Immuno Cell Type:  B cells
Cell Ontology Term:   B cell (CL:0000236)
Comment:  TRPM7 is expressed by B cells.
References:  36
Immuno Cell Type:  T cells
Comment:  TRPM7 is essential for T cell development.
References:  14
Immuno Cell Type:  Natural killer cells
Cell Ontology Term:   natural killer cell (CL:0000623)
References:  36
Immuno Cell Type:  Macrophages & monocytes
Cell Ontology Term:   macrophage (CL:0000235)
Comment:  In macrophages TRPM7 is involved in IL-1α production.
References:  33,36
Tissue Distribution Click here for help
Ubiquitously expressed, especially heart, pituitary, bone, adipose tissue.
Species:  Human
Technique:  RT-PCR
References:  10
Ubiquitously expressed, especially kidney, heart.
Species:  Mouse
Technique:  Northern blot, RT-PCR
References:  19,29
Functional Assays Click here for help
Phosphorylation of myosin IIA heavy chain.
Species:  Mouse
Tissue:  In vitro kinase assay.
Response measured:  In vitro phosphorylation.
References:  6
In vitro phosphorylation of myelin basic protein by kinase domain of TRPM7.
Species:  Mouse
Tissue:  In vitro kinase assay.
Response measured:  Incorporation of radioisotope into MBP.
References:  29
In vitro phosphorylation of annexin-1 by kinase domain of TRPM7.
Species:  Human
Tissue:  In vitro assay.
Response measured:  Biochemical phosphorylation of annexin-1.
References:  8
In vitro channel assay
Species:  Mouse
Tissue:  HEK 293 cells
Response measured:  Quench of fura-2 fluorescence
References:  2
In vitro aequorin bioluminescence fluorescence assay
Species:  Mouse
Tissue:  HEK 293 cells
Response measured:  Aequorin-based Ca2+ measurement
References:  4
A whole-cell magnesium-inhibited current (MIC) that is widely recognised to be mediated by TRPM7 (and, in kidney cells, TRPM6) can be observed by patch clamp recordings of a wide variety of primary and tissue culture cell types. Most widely accepted method of TRPM7 functional assay.
Species:  Mouse
Tissue:  HEK 293 cells, Jurkat cells, CHO cells, neurones, most cell types.
Response measured:  Whole-cell current inhibited by Mg2+ and activated by extracellular protons.
References:  13,15,17,21,24,29-30
Physiological Functions Click here for help
Involved in anoxia-induced cell death: knock-down of TRPM7 by siRNA abrogates anoxia-induced Ca2+ influx and subsequent cell death.
Species:  Mouse
Tissue:  Neurones.
References:  1
Implicated in synaptic vesicle function: TRPM7 knockdown results in impaired transmitter release from sympathetic neurones.
Species:  Rat
Tissue:  Primary sympathetic neurones.
References:  18
Required for embryonic morphogenesis
Species:  Mouse
Tissue:  In vivo<.i>
References:  14,22
Required for lymphocyte differentiation
Species:  Mouse
Tissue:  T cells
References:  14
Participates in Fas-induced apoptosis
Species:  Mouse
Tissue:  T cells
References:  7
Implicated in fibrogenesis in human atrial fibrillation (Note TRPM7 has this same function in mouse)
Species:  Human
Tissue:  Atrial fibroblasts
References:  9
Participates in cell migration (Note TRPM7 has this same function in mouse)
Species:  Human
Tissue:  T cells, fibroblasts
References:  20,35,37
Implicated in cardiac morphogenesis, repolarization, and automaticity.
Species:  Mouse
Tissue:  Embryonic ventricular, adult ventricular, adult atrio-ventricular node, adult sino-atrial node.
References:  31-32
Physiological Consequences of Altering Gene Expression Click here for help
Overexpression of TRPM7 in HEK293 cells engineered for inducible expression leads to cell rounding and detachment. siRNA knockdown of calpain inhibits TRPM7-induced cell rounding.
Species:  Mouse
Tissue:  HEK293 cells
Technique: 
References:  34
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0002145 abnormal T cell differentiation PMID: 18974357 
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0002444 abnormal T cell physiology PMID: 18974357 
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0008827 abnormal thymus cell ratio PMID: 18974357 
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0009543 abnormal thymus corticomedullary boundary morphology PMID: 18974357 
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0002375 abnormal thymus medulla morphology PMID: 18974357 
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0000703 abnormal thymus morphology PMID: 18974357 
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0005018 decreased T cell number PMID: 18974357 
Tg(Lck-cre)548Jxm|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Lck-cre)548Jxm/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2176198  MP:0000715 decreased thymocyte number PMID: 18974357 
Trpm7tm1.1Clph Trpm7tm1.1Clph/Trpm7tm1.1Clph
involves: 129S4/SvJae
MGI:1929996  MP:0008762 embryonic lethality PMID: 18974357 
Tg(Gata1-cre)1Sho|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Gata1-cre)1Sho/0
involves: 129S4/SvJae * CD-1
MGI:1929996  MGI:2448643  MP:0008762 embryonic lethality PMID: 18974357 
Tg(Sox2-cre)1Amc|Trpm7tm1.1Clph|Trpm7tm1Clph Trpm7tm1Clph/Trpm7tm1.1Clph,Tg(Sox2-cre)1Amc/0
involves: 129S4/SvJae * C57BL/6 * CBA
MGI:1929996  MGI:2656537  MP:0008762 embryonic lethality PMID: 18974357 
Trpm7Gt(XC765)Byg Trpm7Gt(XC765)Byg/Trpm7Gt(XC765)Byg
involves: 129P2/OlaHsd * C57BL/6J
MGI:1929996  MP:0006205 embryonic lethality before somite formation PMID: 18974357 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Amyotrophic lateral sclerosis-parkinsonism-dementia complex
OMIM: 105500
Orphanet: ORPHA90020
Role: 
References:  11
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human T1482I 11

References

Show »

1. Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M. (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell, 115 (7): 863-77. [PMID:14697204]

2. Castillo B, Pörzgen P, Penner R, Horgen FD, Fleig A. (2010) Development and optimization of a high-throughput bioassay for TRPM7 ion channel inhibitors. J Biomol Screen, 15 (5): 498-507. [PMID:20413646]

3. Chen X, Numata T, Li M, Mori Y, Orser BA, Jackson MF, Xiong ZG, MacDonald JF. (2010) The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations. Mol Brain, 3: 38. [PMID:21122141]

4. Chubanov V, Mederos y Schnitzler M, Meißner M, Schäfer S, Abstiens K, Hofmann T, Gudermann T. (2012) Natural and synthetic modulators of SK (K(ca)2) potassium channels inhibit magnesium-dependent activity of the kinase-coupled cation channel TRPM7. Br J Pharmacol, 166 (4): 1357-76. [PMID:22242975]

5. Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T. (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA, 101 (9): 2894-9. [PMID:14976260]

6. Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN. (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J, 25 (2): 290-301. [PMID:16407977]

7. Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y et al.. (2012) Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell, 22 (6): 1149-62. [PMID:22698280]

8. Dorovkov MV, Ryazanov AG. (2004) Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem, 279 (49): 50643-6. [PMID:15485879]

9. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L. (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res, 106 (5): 992-1003. [PMID:20075334]

10. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res, 26 (3): 159-78. [PMID:16777713]

11. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM. (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci USA, 102 (32): 11510-5. [PMID:16051700]

12. Hofmann T, Schäfer S, Linseisen M, Sytik L, Gudermann T, Chubanov V. (2014) Activation of TRPM7 channels by small molecules under physiological conditions. Pflugers Arch, 466 (12): 2177-89. [PMID:24633576]

13. Jiang J, Li M, Yue L. (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol, 126 (2): 137-50. [PMID:16009728]

14. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science, 322 (5902): 756-60. [PMID:18974357]

15. Kerschbaum HH, Kozak JA, Cahalan MD. (2003) Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J, 84 (4): 2293-305. [PMID:12668438]

16. Kozak JA, Kerschbaum HH, Cahalan MD. (2002) Distinct properties of CRAC and MIC channels in RBL cells. J Gen Physiol, 120 (2): 221-35. [PMID:12149283]

17. Kozak JA, Matsushita M, Nairn AC, Cahalan MD. (2005) Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J Gen Physiol, 126 (5): 499-514. [PMID:16260839]

18. Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. (2006) The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron, 52 (3): 485-96. [PMID:17088214]

19. Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H. (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics, 7: 159. [PMID:16787531]

20. Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L. (2012) KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS ONE, 7 (8): e43859. [PMID:22952790]

21. Li M, Jiang J, Yue L. (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol, 127 (5): 525-37. [PMID:16636202]

22. Liu W, Su LT, Khadka DK, Mezzacappa C, Komiya Y, Sato A, Habas R, Runnels LW. (2011) TRPM7 regulates gastrulation during vertebrate embryogenesis. Dev Biol, 350 (2): 348-57. [PMID:21145885]

23. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol, 121 (1): 49-60. [PMID:12508053]

24. Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM et al.. (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature, 411 (6837): 590-5. [PMID:11385574]

25. Oancea E, Wolfe JT, Clapham DE. (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res, 98 (2): 245-53. [PMID:16357306]

26. Parenti A, De Logu F, Geppetti P, Benemei S. (2016) What is the evidence for the role of TRP channels in inflammatory and immune cells?. Br J Pharmacol, 173 (6): 953-69. [PMID:26603538]

27. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B. (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium, 45 (3): 300-9. [PMID:19135721]

28. Qin X, Yue Z, Sun B, Yang W, Xie J, Ni E, Feng Y, Mahmood R, Zhang Y, Yue L. (2013) Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. Br J Pharmacol, 168 (6): 1294-312. [PMID:23145923]

29. Runnels LW, Yue L, Clapham DE. (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science, 291 (5506): 1043-7. [PMID:11161216]

30. Runnels LW, Yue L, Clapham DE. (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol, 4 (5): 329-36. [PMID:11941371]

31. Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME, Clapham DE. (2013) Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation, 128 (2): 101-114. [PMID:23734001]

32. Sah R, Mesirca P, Van den Boogert M, Rosen J, Mably J, Mangoni ME, Clapham DE. (2013) Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci USA, 110 (32): E3037-46. [PMID:23878236]

33. Schappe MS, Szteyn K, Stremska ME, Mendu SK, Downs TK, Seegren PV, Mahoney MA, Dixit S, Krupa JK, Stipes EJ et al.. (2018) Chanzyme TRPM7 Mediates the Ca2+ Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity, 48 (1): 59-74.e5. [PMID:29343440]

34. Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L, Runnels LW. (2006) TRPM7 regulates cell adhesion by controlling the calcium-dependent protease calpain. J Biol Chem, 281 (16): 11260-70. [PMID:16436382]

35. Su LT, Liu W, Chen HC, González-Pagán O, Habas R, Runnels LW. (2011) TRPM7 regulates polarized cell movements. Biochem J, 434 (3): 513-21. [PMID:21208190]

36. Vaeth M, Feske S. (2018) Ion channelopathies of the immune system. Curr Opin Immunol, 52: 39-50. [PMID:29635109]

37. Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H. (2009) Calcium flickers steer cell migration. Nature, 457 (7231): 901-5. [PMID:19118385]

38. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. (2001) Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol Cell, 7 (5): 1047-57. [PMID:11389851]

39. Zierler S, Yao G, Zhang Z, Kuo WC, Pörzgen P, Penner R, Horgen FD, Fleig A. (2011) Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem, 286 (45): 39328-35. [PMID:21926172]

Contributors

Show »

How to cite this page