Top ▲

μ receptor

Click here for help

Target id: 319

Nomenclature: μ receptor

Family: Opioid receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 400 6q25.2 OPRM1 opioid receptor mu 1 181
Mouse 7 398 10 1.85 cM Oprm1 opioid receptor, mu 1 114
Rat 7 398 1q11 Oprm1 opioid receptor, mu 1 27,47,160,180,191
Previous and Unofficial Names Click here for help
Mu receptor | MOP | OP3 | MOPr | opioid receptor, mu 1 | opioid receptor
Database Links Click here for help
Specialist databases
GPCRdb oprm_human (Hs), oprm_mouse (Mm), oprm_rat (Rn)
Other databases
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the mu-opioid receptor bound to a morphinan antagonist
PDB Id:  4DKL
Ligand:  β-FNA
Resolution:  2.8Å
Species:  Mouse
References:  102
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the μ-opioid receptor–Gi protein complex
PDB Id:  6DDF
Ligand:  DAMGO
Resolution:  3.5Å
Species:  Mouse
References:  86
Natural/Endogenous Ligands Click here for help
dynorphin A-(1-13) {Sp: Human, Mouse, Rat}
dynorphin A {Sp: Human, Mouse, Rat}
dynorphin A-(1-8) {Sp: Human, Mouse, Rat}
dynorphin B {Sp: Human, Mouse, Rat}
endomorphin-1 {Sp: Human}
endomorphin-2 {Sp: Human}
β-endorphin {Sp: Human} , β-endorphin {Sp: Mouse} , β-endorphin {Sp: Rat}
[Leu]enkephalin {Sp: Human, Mouse, Rat}
[Met]enkephalin {Sp: Human, Mouse, Rat}
Comments: β-Endorphin is the highest potency endogenous ligand
Potential endogenous agonists
endomorphin-1, endomorphin-2
Principal endogenous agonists (Human)
β-endorphin (POMC, P01189), [Met]enkephalin (PENK, P01210), [Leu]enkephalin (PENK, P01210)

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]DAMGO Peptide Ligand is labelled Ligand is radioactive Rn Full agonist 9.2 pKd 142
pKd 9.2 (Kd 5.7x10-10 M) [142]
carfentanil Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Cp Agonist 10.6 pKi 35
pKi 10.6 (Ki 2.4x10-11 M) [35]
Description: Binding affinity in guinea pig whole brain- displacement of [3H]DAGO binding.
(-)-cyclazocine Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 10.0 pKi 165
pKi 10.0 [165]
butorphanol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 9.9 pKi 49
pKi 9.9 (Ki 1.2x10-10 M) [49]
Description: Displacement of [3H]DAMGO from human μ opioid receptor expressed in CHO cells.
sufentanil Small molecule or natural product Approved drug Primary target of this compound Hs Full agonist 9.9 pKi 176
pKi 9.9 (Ki 1.38x10-10 M) [176]
etonitazene Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.7 pKi 165
pKi 9.7 [165]
hydromorphone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 9.6 pKi 182
pKi 9.6 (Ki 2.8x10-10 M) [182]
ethylketocyclazocine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.5 pKi 165
pKi 9.5 [165]
etorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.5 pKi 165
pKi 9.5 [165]
fentanyl Small molecule or natural product Approved drug Ligand has a PDB structure Rn Full agonist 9.4 pKi 142
pKi 9.4 [142]
DAMGO Peptide Click here for species-specific activity table Hs Full agonist 9.3 pKi 63,165
pKi 9.3 [63,165]
DC-1-76.2 Small molecule or natural product Mm Agonist 9.3 pKi 22
pKi 9.3 (Ki 5x10-10 M) [22]
Description: Binding affinity determined in a radioligand membrane binding assay, displacing [3H]naloxone
loperamide Small molecule or natural product Approved drug Primary target of this compound Hs Agonist 9.3 pKi 28
pKi 9.3 (Ki 5.3x10-10 M) [28]
DC 128.1 Small molecule or natural product Mm Agonist 9.3 pKi 22
pKi 9.3 (Ki 5.6x10-10 M) [22]
Description: Binding affinity determined in a radioligand membrane binding assay, displacing [3H]naloxone
EWB-3-14 Small molecule or natural product Hs Agonist 9.2 pKi 69
pKi 9.2 (Ki 6x10-10 M) [69]
Description: Displacement of [125I]Ioxycodone from human mu opioid receptor expressed in CHO cells
EG-1-230 Small molecule or natural product Hs Agonist 9.2 pKi 69
pKi 9.2 (Ki 6x10-10 M) [69]
Description: Displacement of [125I]Ioxycodone from human mu opioid receptor
(-)-methadone Small molecule or natural product Click here for species-specific activity table Hs Full agonist 9.2 pKi 165
pKi 9.2 [165]
[Met]enkephalin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Immunopharmacology Ligand Rn Full agonist 9.2 pKi 142
pKi 9.2 [142]
fentanyl Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.2 pKi 165
pKi 9.2 [165]
cebranopadol Small molecule or natural product Click here for species-specific activity table Hs Agonist 9.1 pKi 97
pKi 9.1 (Ki 7x10-10 M) [97]
Description: Radioligand binding assay
sufentanil Small molecule or natural product Approved drug Rn Full agonist 9.1 pKi 185
pKi 9.1 (Ki 7.7x10-10 M) [185]
eluxadoline Small molecule or natural product Approved drug Click here for species-specific activity table Rn Agonist 9.1 pKi 18
pKi 9.1 (Ki 9x10-10 M) [18]
morphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Full agonist 9.0 pKi 55,165
pKi 9.0 [55,165]
β-endorphin {Sp: Human} Peptide Click here for species-specific activity table Rn Full agonist 9.0 pKi 142
pKi 9.0 [142]
PZM21 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Hs Biased agonist 9.0 pKi 103
pKi 9.0 (Ki 1.1x10-9 M) [103]
bilorphin Small molecule or natural product Primary target of this compound Click here for species-specific activity table Hs Agonist 9.0 pKi 38
pKi 9.0 (Ki 1.1x10-9 M) [38]
dihydromorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.8 pKi 165
pKi 8.8 [165]
dynorphin-(1-11) Peptide Click here for species-specific activity table Hs Full agonist 8.8 pKi 165
pKi 8.8 [165]
normorphine Small molecule or natural product Click here for species-specific activity table Hs Full agonist 8.8 pKi 165
pKi 8.8 [165]
nalbuphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 8.8 pKi 182
pKi 8.8 (Ki 1.6x10-9 M) [182]
buprenorphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Partial agonist 8.8 pKi 165
pKi 8.8 [165]
eluxadoline Small molecule or natural product Approved drug Hs Agonist 8.8 pKi 18
pKi 8.8 (Ki 1.7x10-9 M) [18]
DC-1-90.2 Small molecule or natural product Mm Agonist 8.7 pKi 22
pKi 8.7 (Ki 1.83x10-9 M) [22]
Description: Binding affinity determined in a radioligand membrane binding assay, displacing [3H]naloxone
DC-1-76.1 Small molecule or natural product Mm Agonist 8.7 pKi 22
pKi 8.7 (Ki 1.91x10-9 M) [22]
Description: Binding affinity determined in a radioligand membrane binding assay, displacing [3H]naloxone
DADLE Peptide Click here for species-specific activity table Hs Full agonist 8.7 pKi 165
pKi 8.7 [165]
DAMGO Peptide Click here for species-specific activity table Rn Full agonist 8.7 pKi 142
pKi 8.7 [142]
hydrocodone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 8.7 pKi 128
pKi 8.7 (Ki 2x10-9 M) [128]
BU08028 Small molecule or natural product Click here for species-specific activity table Hs Partial agonist 8.7 pKi 81
pKi 8.7 (Ki 2.14x10-9 M) [81]
cebranopadol Small molecule or natural product Click here for species-specific activity table Rn Agonist 8.6 pKi 97
pKi 8.6 (Ki 2.4x10-9 M) [97]
Description: Radioligand binding assay
dynorphin B {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.5 pKi 165
pKi 8.5 [165]
endomorphin-2 {Sp: Human} Peptide Ligand is endogenous in the given species Rn Full agonist 8.5 pKi 190
pKi 8.5 (Ki 3.24x10-9 M) [190]
(-)-pentazocine Small molecule or natural product Approved drug Click here for species-specific activity table Hs Partial agonist 8.4 pKi 165
pKi 8.4 [165]
dynorphin A-(1-8) {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.4 pKi 165
pKi 8.4 [165]
dynorphin A-(1-13) {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.3 pKi 165
pKi 8.3 [165]
endomorphin-1 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.3 pKi 57,190
pKi 8.3 (Ki 5.01x10-9 M) [57,190]
DSLET Peptide Click here for species-specific activity table Hs Full agonist 8.2 pKi 165
pKi 8.2 [165]
PL017 Peptide Hs Full agonist 8.2 pKi 25,165
pKi 8.2 [25,165]
etonitazene Small molecule or natural product Rn Full agonist 8.2 pKi 54
pKi 8.2 (Ki 6.6x10-9 M) [54]
Description: Binding affinity determined in radioligand displacement assay using rat brain and [3H]DAMGO as tracer
[Leu]enkephalin {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Partial agonist 8.1 pKi 165
pKi 8.1 [165]
dynorphin A {Sp: Human, Mouse, Rat} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.1 pKi 165
pKi 8.1 [165]
UFP-512 Small molecule or natural product Click here for species-specific activity table Hs Agonist 8.0 pKi 175
pKi 8.0 [175]
Description: Measuring displacement of [3H]-diprenorphine in vitro
isotonitazene Small molecule or natural product Rn Full agonist 7.9 pKi 173
pKi 7.9 (Ki 1.12x10-8 M) [173]
Description: Binding affinity in rat brain
morphine Small molecule or natural product Approved drug Click here for species-specific activity table Ligand has a PDB structure Rn Partial agonist 7.9 pKi 142
pKi 7.9 [142]
BW373U86 Small molecule or natural product Click here for species-specific activity table Rn Agonist 7.8 pKi 24
pKi 7.8 (Ki 1.5x10-8 M) [24]
UFP-505 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.8 pKi 40-41
pKi 7.8 [40-41]
ADL5747 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.7 pKi 92
pKi 7.7 (Ki 1.8x10-8 M) [92]
SRI22141 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.7 pKi 94
pKi 7.7 (Ki 1.97x10-8 M) [94]
Description: Binding affinity
brorphine Small molecule or natural product Rn Agonist 7.6 pKi 173
pKi 7.6 (Ki 2.42x10-8 M) [173]
Description: Binding affinity for rat brain MOR, determined in a radiologand displacement assay
ADL5859 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.5 pKi 91
pKi 7.5 (Ki 3.2x10-8 M) [91]
ICI-199441 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.3 pKi 88
pKi 7.3 (Ki 5.3x10-8 M) [88]
Description: Displacement of [3H]diprenorphine from human μ opioid receptor expressed in CHO-K1 cells
SCH221510 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.2 pKi 174
pKi 7.2 (Ki 6.5x10-8 M) [174]
Description: Radioligand binding assay
SR16835 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.1 pKi 166
pKi 7.1 (Ki 7.99x10-8 M) [166]
Description: Radioligand binding assay
codeine Small molecule or natural product Approved drug Primary target of this compound Hs Full agonist 6.9 pKi 165
pKi 6.9 [165]
tapentadol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 6.8 pKi 168
pKi 6.8 (Ki 1.6x10-7 M) [168]
oxycodegol Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.6 pKi 117
pKi 6.6 (Ki 2.37x10-7 M) [117]
Description: Competitive membrane binding assay measuring displacement [3H]naloxone from human μ receptors expressed by CHO cells.
BW373U86 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.6 pKi 91
pKi 6.6 (Ki 2.6x10-7 M) [91]
HS665 Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.3 pKi 155
pKi 6.3 (Ki 5.42x10-7 M) [155]
compound 3 [PMID: 23134120] Small molecule or natural product Click here for species-specific activity table Hs Agonist 6.1 pKi 155
pKi 6.1 (Ki 8.26x10-7 M) [155]
tramadol Small molecule or natural product Approved drug Click here for species-specific activity table Hs Agonist 5.8 pKi 182
pKi 5.8 (Ki 1.6x10-6 M) [182]
Description: Displacement of the mu aginist peptide DAMGO from the mu receptor expressed in CHO cells.
etonitazene Small molecule or natural product Click here for species-specific activity table Hs Full agonist 10.5 pEC50 54
pEC50 10.5 (EC50 3x10-11 M) [54]
Description: Potency determined as inhibition of cAMP accumulation in a Gi-cAMP assay
isotonitazene Small molecule or natural product Hs Full agonist 10.3 pEC50 173
pEC50 10.3 (EC50 5x10-11 M) [173]
Description: Potency determined in a cAMP accumulation assay in HEK cells expressing hMOR
SRI22141 Small molecule or natural product Click here for species-specific activity table Hs Agonist 9.7 pEC50 94
pEC50 9.7 (EC50 2x10-10 M) [94]
Description: Potency in a 35S-GTPγS assay
mitragynine Small molecule or natural product Hs Agonist 9.3 pEC50 21
pEC50 9.3 (EC50 5x10-10 M) [21]
Description: Determined as inhibition of forskolin-stimulated cAMP accumulation in HEK293T cells expressing human mu opioid receptor
brorphine Small molecule or natural product Hs Agonist 8.3 – 8.7 pEC50 80,173
pEC50 8.7 (EC50 2.06x10-9 M) [173]
Description: Potency determined in a cAMP accumulation assay in HEK cells expressing hMOR
pEC50 8.3 (EC50 4.8x10-9 M) [80]
Description: Potency in a GTPγS binding assay
PZM21 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Hs Biased agonist 8.3 pEC50 103
pEC50 8.3 (EC50 4.6x10-9 M) [103]
Description: In a Gi/o activation assay.
4F-MT-45 Small molecule or natural product Hs Agonist 6.8 pEC50 8
pEC50 6.8 (EC50 1.7x10-7 M) [8]
Description: β-arrestin2 recruitment assay
2F-MT-45 Small molecule or natural product Hs Agonist 6.7 pEC50 8
pEC50 6.7 (EC50 2x10-7 M) [8]
Description: β-arrestin2 recruitment assay
mitragynine Small molecule or natural product Mm Agonist 6.7 pEC50 170
pEC50 6.7 (EC50 2.03x10-7 M) [170]
Description: Determined as agonist-induced [35S]GTPγS binding in CHO cells expressing mouse mu opioid receptor
3F-MT-45 Small molecule or natural product Hs Agonist 6.2 pEC50 8
pEC50 6.2 (EC50 6.1x10-7 M) [8]
Description: β-arrestin2 recruitment assay
thebaine Small molecule or natural product Ligand has a PDB structure Hs Partial agonist 5.3 pEC50 129
pEC50 5.3 (EC50 5.6x10-6 M) [129]
Description: Measuring ligand-indiced activation of Gi signalling in a FRET-based assay
MT-45 Small molecule or natural product Hs Agonist 4.6 pEC50 8
pEC50 4.6 (EC50 2.3x10-5 M) [8]
Description: β-arrestin2 recruitment assay
levorphanol Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 9.9 pIC50 65
pIC50 9.9 (IC50 1.3x10-10 M) [65]
BU72 Small molecule or natural product Ligand has a PDB structure Cp Agonist 9.8 pIC50 71
pIC50 9.8 (IC50 1.5x10-10 M) [71]
Description: Measuring displacement of [3H]DAMGO from brain membranes isolated from Hartley guinea pigs.
methadone Small molecule or natural product Approved drug Primary target of this compound Hs Agonist 8.4 pIC50 140
pIC50 8.4 (IC50 4.1x10-9 M) [140]
Description: Binding affinity against μ-opioid receptor (human) using [3H]DAMGO radioligand.
pethidine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Agonist 6.5 pIC50 140
pIC50 6.5 (IC50 3.15x10-7 M) [140]
AR-M1000390 Small molecule or natural product Click here for species-specific activity table Hs Agonist 5.4 pIC50 4
pIC50 5.4 (IC50 3.8x10-6 M) [4]
[3H]PL017 Peptide Ligand is labelled Ligand is radioactive Rn Agonist - - 66
[66]
U-47700 Small molecule or natural product Rn Agonist - - 29
[29]
View species-specific agonist tables
Agonist Comments
Discrimination of full or partial agonism is very dependent on the level of receptor expression and on the assay used to monitor agonist effects. Many agents may behave as full agonists or potent partial agonists in cell lines expressing cloned receptors in high concentration, but in other environments they may show only weak agonist activity. The identification of agonist activity in the table is largely based on the ability to stimulate GTPγ35S binding in cell lines expressing cloned human μ receptors. Agents giving 85% or greater stimulation than that given by DAMGO have been characterized as Full Agonists [165].

It is still unclear whether endomorphins are endogenous. Morphine occurs endogenously [139].

We have tagged the μ receptor as the primary drug target for hydrocodone based on this drug having the highest affinity at this receptor compared to the κ and δ receptors [128]. Similarly, we have tagged the μ receptor as the primary target of hydromorphone [182].

Methadone is selective for the μ receptor: comparable IC50s at the κ and δ receptors are 512 and 1090nM respectively [140].

[11C]carfentanil (PubChem CID 449698) binds the human μ receptor with a Ki of 0.07 nM, in a [3H]DAMGO displacement assay [67].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[3H]diprenorphine Small molecule or natural product Ligand is labelled Ligand is radioactive Mm Antagonist 10.1 pKd 142
pKd 10.1 (Kd 7.94x10-11 M) [142]
[3H]naloxone Small molecule or natural product Ligand is labelled Ligand is radioactive Rn Antagonist 8.6 – 9.0 pKd 131
pKd 8.6 – 9.0 (Kd 2.8x10-9 – 1x10-9 M) [131]
Description: CHO and BHK cell lines stably expressing the rat μ receptor
naloxonazine Small molecule or natural product Mm Antagonist 10.3 pKi 142
pKi 10.3 [142]
samidorphan Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 10.3 pKi 183
pKi 10.3 (Ki 5.2x10-11 M) [183]
diprenorphine Small molecule or natural product Mm Antagonist 10.1 pKi 142
pKi 10.1 [142]
quadazocine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 10.0 pKi 165
pKi 10.0 [165]
(-)-bremazocine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.7 pKi 165
pKi 9.7 [165]
CTOP Peptide Hs Antagonist 9.7 pKi 59,142
pKi 9.7 [59,142]
nalmefene Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.5 pKi 165
pKi 9.5 [165]
β-FNA Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.5 pKi 165
pKi 9.5 [165]
β-FNA Small molecule or natural product Mm Antagonist 9.5 pKi 142
pKi 9.5 [142]
NFP Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.4 pKi 193
pKi 9.4 (Ki 3.6x10-10 M) [193]
Description: In a competitive radioligand membrane binding assay measuring displacement of [3H]naloxone by NFP from μ receptor expressed in CHO cells.
naltrexone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 9.1 – 9.7 pKi 79,165
pKi 9.1 – 9.7 (Ki 7.1x10-10 – 1.99x10-10 M) [79,165]
GSK1521498 Small molecule or natural product Primary target of this compound Hs Antagonist 9.4 pKi 79
pKi 9.4 (Ki 4.17x10-10 M) [79]
alvimopan Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 9.3 pKi 90
pKi 9.3 (Ki 4.7x10-10 M) peripheral [90]
diprenorphine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 9.1 pKi 165
pKi 9.1 [165]
levallorphan Small molecule or natural product Approved drug Primary target of this compound Hs Antagonist 8.8 – 9.3 pKi 101
pKi 8.8 – 9.3 (Ki 1.69x10-9 – 4.8x10-10 M) [101]
Description: Competition binding assay- the calculated Ki varies depending on the radioligand used.
naloxone Small molecule or natural product Approved drug Click here for species-specific activity table Mm Antagonist 9.0 pKi 142
pKi 9.0 [142]
naldemedine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.9 pKi 73
pKi 8.9 (Ki 1.13x10-9 M) [73]
nalorphine Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.9 pKi 165
pKi 8.9 [165]
naloxone Small molecule or natural product Approved drug Click here for species-specific activity table Hs Antagonist 8.9 pKi 165
pKi 8.9 [165]
BNTX Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.8 pKi 165
pKi 8.8 [165]
AT-076 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.8 pKi 165,192
pKi 8.8 (Ki 1.67x10-9 M) [165,192]
Description: Radioligand binding assay
methylnaltrexone Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Hs Antagonist 8.7 pKi 182
pKi 8.7 (Ki 2x10-9 M) [182]
Description: Displacement of [3H]DAMGO from human μ opioid receptors expressed in CHO cells
CTAP Peptide Click here for species-specific activity table Hs Antagonist 8.6 pKi 25,165
pKi 8.6 [25,165]
naloxone benzoylhydrazone Small molecule or natural product Click here for species-specific activity table Hs Antagonist 8.2 – 8.7 pKi 165
pKi 8.7 [165]
pKi 8.2 [165]
naltrindole Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 8.2 pKi 165
pKi 8.2 [165]
naltriben Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Antagonist 7.9 pKi 165
pKi 7.9 [165]
nor-binaltorphimine Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 pKi 165
pKi 7.7 [165]
LY2456302 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.6 pKi 144
pKi 7.6 (Ki 2.4x10-8 M) [144]
zyklophin Peptide Click here for species-specific activity table Hs Antagonist 5.2 pKi 133
pKi 5.2 (Ki 5.88x10-6 M) [133]
NMRA-140 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.0 pIC50 58
pIC50 7.0 (IC50 1.1x10-7 M) [58]
[3H]CTOP Peptide Ligand is labelled Ligand is radioactive Hs Antagonist - - 164
[164]
View species-specific antagonist tables
Antagonist Comments
β-FNA is an electrophilic affinity label. The pKi reflects both the reversible and irreversible binding components.
CTOP is a good somatostatin receptor (sst receptor) agonist in addition to having antagonist activity at μ opioid receptors; it should never be used in studies of μ receptor function in situations where sst receptors may be involved. CTAP does not activate sst receptors [33].

The μ receptor is tagged as the primary target for the drug levallorphan, since the drug is mainly used for its antagonistic actions as an antidote to opioid overdose. Note that this drug also acts as a partial agonist at the κ receptor.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
BMS-986123 Small molecule or natural product Hs Neutral 6.0 pKB 19
pKB 6.0 (KB 1x10-6 M) [19]
BMS-986121 Small molecule or natural product Hs Positive 5.7 pKB 19
pKB 5.7 (KB 2x10-6 M) [19]
BMS-986124 Small molecule or natural product Hs Neutral 5.7 pKB 19
pKB 5.7 (KB 2x10-6 M) [19]
BMS-986122 Small molecule or natural product Hs Positive 5.3 pKB 19
pKB 5.3 (KB 5x10-6 M) [19]
BMS-986187 Small molecule or natural product Rn Positive 7.2 pKi 98
pKi 7.2 (Ki 6.3x10-8 M) In the presence of 10 μM BMS-986187, the affinity of the μ-OR agonist DAMGO was enhanced 11-fold from 724 nM to 63 nM. [98]
BMS-986121 Small molecule or natural product Hs Positive 6.0 pEC50 19
pEC50 6.0 (EC50 1x10-6 M) [19]
BMS-986122 Small molecule or natural product Hs Positive 5.5 pEC50 19
pEC50 5.5 (EC50 3x10-6 M) [19]
View species-specific allosteric modulator tables
Allosteric Modulator Comments
BMS-986123 and BMS-986124 are Silent Allosteric Modulators (SAMs). These compounds neither potentiate nor inhibit the actions of an orthosteric agonist, however they block the actions of the Positive Allosteric Modulators (PAMs).
A number of proteins such as G protein-coupled receptor kinases, β-arrestins and G proteins clearly regulate μ opioid receptor affinities and function. In addition sodium and guanyl nucleotides can modify the functional μ receptor complex and G protein interaction. Also, μ receptors are reported to form heterodimers with other receptors of the OP family or with non-opioid G protein-coupled receptors. Heterodimerisation may alter μ receptor function and/or trafficking [51,56,134].
Other Binding Ligands
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
compound 16 [PMID: 31498617] Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Binding 5.4 pKi 141
pKi 5.4 (Ki 3.73x10-6 M) [141]
Description: Receptor binding in a radioligand displacement assay using [3H]DAMGO as tracer.
EG-1-203 Small molecule or natural product N/A - 9.0 pEC50 60
pEC50 9.0 (EC50 9.5x10-10 M) [60]
Description: Agonist activity at human MOR, determined in a forskolin-stimulated cAMP accumulation luminescence assay
Immuno Process Associations
Immuno Process:  Cytokine production & signalling
Immuno Process:  Inflammation
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gi/Go family Adenylyl cyclase stimulation
Adenylyl cyclase inhibition
Phospholipase C stimulation
Potassium channel
Calcium channel
Phospholipase A2 stimulation
Phospholipase D stimulation
Other - See Comments
Comments:  The following systems have also been reported to be activated following Gi/Go activation via the μ receptor:
  • Epidermal growth factor receptor transactivation and subsequent mitogen activated protein kinase ERK [12,96]
  • Jun N-terminal kinase (JNK) expression and activity [45,77,152]
  • Signal transducer and activator of transcription 3 (STAT3) [189]
  • Focal adhesion kinase [104]
  • Nuclear Ca2+/calmodulin translocation [177]
  • Phosphatidylinositol-3 kinase expression and activity [77,126].
References:  6,17,20,23,36,48,68,83,116,119,125,130,137-138,143,169,187
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Comments:  G16 couples to the μ opioid receptor and activates PLC.
References:  70,93
Tissue Distribution Click here for help
Skin: dermal and epidermal nerve fibers.
Species:  Human
Technique:  Immunohistochemistry.
References:  156
Immune cells: CEM x174 T/B lymphocytes, Raji B cells, CD4+, monocytes/macrophages, neutrophils.
Species:  Human
Technique:  RT-PCR.
References:  34
Pregnant uterus.
Species:  Mouse
Technique:  in situ hybridisation.
References:  194
CNS: caudate putamen, nucleus accumbens, endopiriform nucleus, fundus striati, habenula, amygdaloid nuclei, thalamus, hypothalamus, zona incerta, ventral tegmental area, interpeduncular nucleus, central gray, dentate gyrus, substantia nigra, the superior colliculus.
Species:  Mouse
Technique:  Radioligand binding.
References:  82
CNS: Olfactory bulb, striatal patches and subcallosal streak, medial septum, piriform and cingulate cortex, entorhinal cortex, bed nucleus stria terminalis, medial preoptic area, globus and ventral pallidum, thalamic nuclei, lateral hypothalamus, mammillary nuclei , hippocampus, amygdaloid nuclei, ventral and lateral periaqueductal grey, ventral tegmental area and substantia nigra pars compacta, superior and inferior colliculi, interpeduncular nuclei, locus ceruleus, parabrachial nuclei, median raphe, nucleus of the solitary tract, spinal cord (dorsal root ganglia and layers I and II).
Species:  Rat
Technique:  in situ hybridisation.
References:  160
CNS: olfactory bulb.
Species:  Rat
Technique:  immunocytochemistry.
References:  149
CNS: cerebral cortex, striatum, hippocampus, locus coeruleus, superficial laminae of the dorsal horn.
Species:  Rat
Technique:  Immunohistochemistry.
References:  5
Gastrointestinal tract.
Species:  Rat
Technique:  Immunohistochemistry.
References:  7
CNS: superficial layers of the dorsal horn.
Species:  Rat
Technique:  immunocytochemistry.
References:  31-32
CNS: striatum, medial habenular nucleus, medial terminal nucleus of the accessory optic tract, interpeduncular nucleus, median raphe nucleus, parabrachial nuclei, locus coeruleus, ambiguous nucleus, nucleus of the solitary tract, and laminae I and II of the medullary and spinal dorsal horns, cerebral cortex, amygdala, thalamus, and hypothalamus.
Species:  Rat
Technique:  Immunohistochemistry.
References:  42
CNS: striatum, layers I and III of the cortex, the pyramidal cell layer of the hippocampal formation, specific nuclei of the thalamus, the pars reticulata of the substantia nigra, the interpeduncular nucleus, and the locus coeruleus.
Species:  Rat
Technique:  Radioligand binding.
References:  159
Accessory optic tract.
Species:  Rat
Technique:  Immunohistochemistry.
References:  44
CNS: superficial layers of the medullary and spinal dorsal horns. Colocalisation with substance P.
Species:  Rat
Technique:  immunocytochemistry.
References:  43,95
CNS: anterior cingulate cortex, neocortex, amygdala, hippocampus, ventral dentate gyrus, presubiculum, nucleus accumbens, caudate putamen, thalamus, habenula, interpeduncular nucleus, pars compacta of the substantia nigra, superior and inferior colliculi, raphe nuclei.
Species:  Rat
Technique:  Radioligand binding.
References:  108
CNS: superficial layers of the spinal cord dorsal horn, nucleus caudalis of the spinal tract of the trigeminal, nucleus of the solitary tract, nucleus ambiguous, locus coeruleus, interpeduncular nucleus, lateral habenular nucleus, caudate-putamen, nucleus accumbens, ventral tegmental area, thalamus, hypothalamus, amygdaloid nuclei, nucleus accumbens, cerebral cortex, septum and diagonal band, preoptic area, medial thalamic and habenular nuclei, locus coeruleus, nucleus ambiguous, trigeminal nucleus caudalis, spinal cord substantia gelatinosa zones.
Species:  Rat
Technique:  Immunohistochemistry.
References:  122
CNS: Purkinje cells and granular and molecular layers of the fetal, neonatal and adult cerebellum.
Species:  Rat
Technique:  Immunohistochemistry.
References:  123
Ear: cochleae.
Species:  Rat
Technique:  RT-PCR.
References:  76,135
CNS: nucleus accumbens (plasma membranes: extrasynaptic neuronal > glial)
Species:  Rat
Technique:  immunocytochemistry.
References:  157
CNS: nucleus accumbens (plasma membranes of GABAergic neurons).
Species:  Rat
Technique:  immunocytochemistry.
References:  158
CNS: locus coeruleus (noradrenergic perikarya and dendrites).
Species:  Rat
Technique:  immunocytochemistry.
References:  171-172
CNS: accessory olfactory bulb, anterior olfactory nuclei, striatal patches of the nucleus accumbens and caudate-putamen, endopiriform nucleus, claustrum, diagonal band of Broca, globus pallidus, ventral pallidum, bed nucleus of stria terminalis, most thalamic nuclei, medial and posteriocortical medial amygdala, lateral, dorsomedial, posterior and mammillary nuclei of the hypothalamus, presubiculum, subiculum, rostral interpeduncular nucleus, median raphe, inferior colliculus, parabrachial nucleus, locus coeruleus, central grey, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis, nucleus cuneatus, dorsal motor nucleus of vagus.
Species:  Rat
Technique:  In situ hybridisation and radioligand binding.
References:  107
CNS: thalamus, striatum, hypothalamus and pons-medulla > hippocampus and midbrain > cerebral cortex and cerebellum.
Species:  Rat
Technique:  Northern blotting.
References:  115
CNS: olfactory bulb, caudate-putamen, nucleus accumbens, lateral and medial septum, diagonal band of Broca, bed nucleus of the stria terminalis, most thalamic nuclei, hippocampus, amygdala, medial preoptic area, superior and inferior colliculi, central gray, dorsal and median raphe, raphe magnus, locus coeruleus, parabrachial nucleus, pontine and medullary reticular nuclei, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis and cuneatus, dorsal motor nucleus of vagus, spinal cord, dorsal root ganglia.
Species:  Rat
Technique:  in situ hybridisation.
References:  106
CNS: superficial layers (laminae I and II) of the dorsal horn of the spinal cord.
Species:  Rat
Technique:  Radioligand binding.
References:  14
CNS: caudate putamen.
Species:  Rat
Technique:  immunocytochemistry.
References:  78,178
CNS: accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and substantia nigra.
Species:  Rat
Technique:  Radioligand binding.
References:  150
CNS: thalamus, striosomes of the caudate-putamen, globus pallidus, cerebral cortex.
Species:  Rat
Technique:  in situ hybridisation.
References:  39
CNS: thalamic, brainstem and reticular core nuclei (highest in the habenular and thalamic nuclei).
Species:  Rat
Technique:  in situ hybridisation.
References:  52
Tissue Distribution Comments
μ opioid receptors are widely distributed with dense labelling throughout the fore, mid and hindbrain regions in the CNS. Quantitatively, the μ receptor is the most highly expressed of all the opioid receptors. Although the early studies used non-selective ligands such as [3H]dihydromorphine, characterisation of the distribution of the μ opioid receptor has been aided by the availability of [3H]DAMGO, a highly selective opioid agonist that has been the ligand of choice for labelling μ opioid receptors for over 20 years. Immunohistochemistry has largely confirmed receptor autoradiography.

For a review of μ opioid receptor expression in the rat see [105].
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of intracellular cAMP levels in SH-SY5Y cells endogenously expressing the μ receptor.
Species:  Human
Tissue:  SH-SY5Y cells.
Response measured:  Inhibition of cAMP accumulation.
References:  188
Measurement of [35S]GTPγS binding.
Species:  Rat
Tissue:  Brain slices.
Response measured:  [35S]GTPγS binding.
References:  151
Physiological Functions Click here for help
Constriction of the pupil.
Species:  Human
Tissue:  Pupil.
References:  124
DAMGO increases the conductance of an inwardly rectifying potassium conductance and hyperpolarises locus coeruleus neurons.
Species:  Rat
Tissue:  Brain.
References:  130
μ receptor agonsts reduce bith early (GABAA receptor-mediated) and late (GABAB receptor-mediated) inhibitory postsynaptic currents in the dentate gyrus of hippocampal slices.
Species:  Rat
Tissue:  Hippocampal slices.
References:  184
Morphine inhibits N- and P/Q-type Ca2+ channels in the nucleus traxtus solitarius of the rat.
Species:  Rat
Tissue:  Brain.
References:  143
Morphine is responsible for modulating the Ca2+ currents in the mouse periaqueductal grey neurons.
Species:  Mouse
Tissue:  Periaqueductal grey neurons.
References:  36
Morphine inhibits interpheron (IFN)-γ promotor activity in activated mouse T cells, which is mediated through two distinct cAMP-dependent pathways, the NF-κB signalling pathway and the ERK1/2, p38 MAPK, AP-1/NFAT pathway.
Species:  Mouse
Tissue:  T cells.
References:  179
Body temperature regulation:
μ receptor activation induces hypothermia, blocked by selective μ receptor antagonists. The effect is centrally mediated, involving both oxidative metabolism and heat exchange.
Species:  Rat
Tissue:  In vivo.
References:  64
Physiological Consequences of Altering Gene Expression Click here for help
Analgesia:
Untreated μ receptor knockout mice display shorter latencies on tail flick and hot plate tests for spinal and supraspinal nociceptive responses than wild-type mice, which support the role for endogenous opioid-peptide interactions with the μ receptor in normal nociceptive processing. Interestingly, analgesia produced by the δ opioid receptor agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) in hot plate and tail flick tests is dramatically reduced in μ opioid receptor knockout mice in a gene-dose-dependent fashion, suggesting that DPDPE may require μ opioid receptor occupancies for full efficacy.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  99,109,147,153-154
Analgesia:
Loss of μ opioid receptors prevents the plasma membrane translocation of δ opioid receptors in the dorsal horn of the spinal cord caused by chronic inflammatory pain induced by intraplantar injection of Freund's adjuvant.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  120-121
Addictions; drug-induced reinforcement:
Opioid self-administration is abolished in μ receptor knockout mice. On the contrary, morphine is aversive in the μ opioid deficient mice by interaction with κ opioid receptors. In addition, μ opioid receptors may play a role in mediating various addictive agents such as ethanol, cocaine, nicotine and cannabinoid. Ethanol consumption is decreased in μ opioid knockout mice, and the animals exhibit less ethanol reward in a conditioned place preference paradigm.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  9-10,13,37,53,61-62,72
Addictions; locomotor activity:
Cocaine-induced locomotor activity but not sensitisation is abolished in μ receptor knockout mice, while wild-type and heterozygous μ receptor mice display reduced cocaine conditioned place-preference, confirming a central role of μ receptors in drug reward but opposing effects in locomotor sensitisation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  186
Emotional responsivity:
μ opioid receptors may play a role in the modification of emotional responses to novelty, anxiety and depression. μ receptor knockout mice show less anxiety in the elevated plus maze and emergence tests, reduced response to novel stimuli in the novelty test and less depressive-like behaviour in the forced swim test.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  46
Attachment behaviour:
Pups of μ receptor knockout mice emit fewer ultrasonic vocalisations when removed from their mothers. It indicates a role for μ opioid receptors in diseases characterised by deficits in attachment behaviour, such as autism or reactive attachment disorder.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  118
Modulation of neurotransmitter systems, dopamine:
Administration of apomorphine increases the locomotor activity of μ receptor knockout mice more than wild-type mice, which may be related to the increased binding sites of the dopamine D2 receptor in the caudate putamen of receptor deficient mice. A tonically active μ opioid system modulates the basal dopamine neurotransmission in the nucleus accumbens (NAc). Microdialysis studies have revealed significant decreases in the dopamine fraction in μ opioid receptor knckout mice. μ opioid receptor knockout mice show diminished food-anticipatory activity which is dependent on μ-regulated dopaminergic activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26,163
Modulation of neurotransmitter systems, acetylcholine:
Muscarinic M1 receptor mRNA and protein levels are reduced in various bran regions when compared to the wild-type. In μ opioid receptor deficient mice an up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatal caudate putamen and nucleus accumbens have been reported, which can be associated with the enhanced tremors after administration of acetylcholinesterase inhibitors.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  162
Modulation of neurotransmitter systems, glutamate, somatostatin:
An increase in glutamate and somatostatin binding was observed in μ receptor knockout mice, which may contribute to the enhanced excitability in these mice, showing an accelerated kindling development induced by the convulsant drug pentylenetetrazol.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  118
Learning and memory:
Several studies have demonstrated that the loss of μ opioid receptors decreases LTP in the dentate gyrus of the hippocampus, suggesting the possibility that the lack of μ opioid receptors may acccompany a change in learning and memory. μ opioid receptor knockout mice show a significant spatial memory impairment compared to wild-type in the Morris water maze. They also exhibit an impairment in the ultimate level of spatial learning, suggesting that the μ opioid receptor may play a positive role in learning and memory by increasing LTP in CA3 neurons. On the other hand, the learning deficit induced in pentylenetetrazol kindling id absent in μ opioid receptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  74-75,110
Immune responses:
In μ receptor knockout mice chronic morphine administration cannot induce lymphoid organ atrophy, nor diminish the ratio of CD4+ CD8+ cells in the thymus nor reduce natural killer activity. Morphine modulation of macrophage phagocytosis and macrophage secretion of TNFα is not observed in μ receptor knockout animals. In contrast, morphine reduction of splenic and thymic cell number and mitogen-induced proliferation are unaffected, as is morphine inhibition of Il-1 and Il-6 secretion by macrophages. Morphine treatment promotes T(H2) differentiation through a μ opioid dependent mechanism. Developing T cells are responsive to the chemotactic effect of μ opioid agonists, an effect not seen in μ opioid knockout mice. Deficiency of μ receptor exacerbates experimental colitis whereas administration of the μ receptor agonist DAMGO reduces inflammation in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  50,113,136,145-146
Other physiological functions:
Sexual function in male homozygotes is affected, as shown by reducing mating activity and a decrease in sperm count and motility. Morphine-induced inhibition of gastrointestinal transit is abolished in μ receptor knockout mice, and basal GI motility is lower as compared to heterozygous and wild-type animals. μ opioid receptor knockout mice develop insulin resistance more rapidly than wild-type mice indicating a role for μ in controlling insulin resistance.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  30,161
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Oprm1tm1Jlw Oprm1tm1Jlw/Oprm1tm1Jlw
involves: 129P2/OlaHsd
MGI:97441  MP:0009748 abnormal behavioral response to addictive substance PMID: 18207746 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009278 abnormal bone marrow cell physiology PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009278 abnormal bone marrow cell physiology PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:97441  MP:0000188 abnormal circulating glucose level PMID: 16505249 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0006410 abnormal common myeloid progenitor cell morphology PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/c * C57BL/6
MGI:97441  MP:0002912 abnormal excitatory postsynaptic potential PMID: 10727705 
Oprm1tm1Yxp Oprm1tm1Yxp/Oprm1tm1Yxp
involves: 129/Sv * C57BL/6
MGI:97441  MP:0006001 abnormal intestinal transit time PMID: 19273844 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0003959 abnormal lean body mass PMID: 19221053 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/cJ * C57BL/6J
MGI:97441  MP:0003633 abnormal nervous system physiology PMID: 15893889 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002803 abnormal operant conditional behavior PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0002803 abnormal operant conditional behavior PMID: 15355329 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0001970 abnormal pain threshold PMID: 10835636  8893006 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0001970 abnormal pain threshold PMID: 9037090 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0008872 abnormal physiological response to xenobiotic PMID: 17544222 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0001463 abnormal spatial learning PMID: 14499482 
Oprm1tm2.1Loh Oprm1tm2.1Loh/Oprm1tm2.1Loh
Not Specified
MGI:97441  MP:0001968 abnormal touch/ nociception PMID: 12525693 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002675 asthenozoospermia PMID: 9126934 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0009776 decreased behavioral withdrawal response PMID: 10835636 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9555078 
Oprm1+|Oprm1tm1Loh Oprm1tm1Loh/Oprm1+
involves: 129P2/OlaHsd
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9555078 
Oprm1tm1Yxp Oprm1tm1Yxp/Oprm1tm1Yxp
involves: 129/Sv * C57BL/6
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 19273844 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9126934 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 19528658 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001935 decreased litter size PMID: 9126934 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 11377918 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 11377918 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 11377918 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 9555078 
Oprm1+|Oprm1tm1Loh Oprm1tm1Loh/Oprm1+
involves: 129P2/OlaHsd
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 9555078 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0003998 decreased thermal nociceptive threshold PMID: 9037090 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0003998 decreased thermal nociceptive threshold PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009749 enhanced behavioral response to addictive substance PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0009749 enhanced behavioral response to addictive substance PMID: 15355329 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009779 enhanced behavioral response to anesthetic PMID: 11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009779 enhanced behavioral response to anesthetic PMID: 11032994 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009754 enhanced behavioral response to cocaine PMID: 12781916 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0009713 enhanced conditioned place preference behavior PMID: 11377918 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009171 enlarged pancreatic islets PMID: 19221053 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0001402 hypoactivity PMID: 8893006 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001402 hypoactivity PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0001402 hypoactivity PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002578 impaired ability to fire action potentials PMID: 15926936 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199  11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199  11032994 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
involves: 129S2/SvPas
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 17544222 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 8893006 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 11377918 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 12781916  9555078 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 9126934 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199  11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199  11032994 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
involves: 129S2/SvPas
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 17544222 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0009712 impaired conditioned place preference behavior PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0005292 improved glucose tolerance PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0001260 increased body weight PMID: 19221053 
Oprm1tm1Jlw Oprm1tm1Jlw/Oprm1tm1Jlw
involves: 129P2/OlaHsd
MGI:97441  MP:0001981 increased chemically-elicited antinociception PMID: 18207746 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002079 increased circulating insulin level PMID: 19221053 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0003063 increased coping response PMID: 10835636 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0003135 increased erythroid progenitor cell number PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0003058 increased insulin secretion PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009108 increased pancreas weight PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0005458 increased percent body fat PMID: 19221053 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009336 increased splenocyte proliferation PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009336 increased splenocyte proliferation PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0010024 increased total body fat amount PMID: 19221053 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002574 increased vertical activity PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0002574 increased vertical activity PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0008911 induced hyperactivity PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0008911 induced hyperactivity PMID: 15355329 
Oprm1tm2Loh Oprm1tm2Loh/Oprm1tm2Loh
Not Specified
MGI:97441  MP:0002169 no abnormal phenotype detected PMID: 12525693 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002687 oligozoospermia PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/c * C57BL/6
MGI:97441  MP:0001473 reduced long term potentiation PMID: 10727705 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001922 reduced male fertility PMID: 9126934 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001380 reduced male mating frequency PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0001380 reduced male mating frequency PMID: 9126934 
Biologically Significant Variants Click here for help
Type:  Splice variants
Species:  Mouse
Description:  Several splice variant forms of the μ receptor (formerly MOR-1) have been identified. These variant forms were designated MOR-1A through MOR-1X; some of the variants express truncated forms of the receptor. The B, C and D variants differ in the amino acid composition at the C-terminus. The distribution of the protein expressed from the B, C and D variant forms has been studied by immunohistochemistry in the rat brain. They show a different distribution in the brain and spinal cord. When compared to the μ receptor, MOR-1D is deferentially desensitised in response to opioid agonists.
References:  1-3,15,83,85,89,112,127,132,148-149,167,195
Type:  Single nucleotide polymorphism
Species:  Human
Description:  An Asn40 -> Asp polymorphism has been found in high abundance in the caucasian and asian population. There are studies showing functional differences of the variant to wild-type receptor in vitro and in vivo. In addition, there are several reports showing association of this polymorphism with addiction and idiopathic epilepsy.
Amino acid change:  N40D
References:  11,16,87,100,111
Type:  Single nucleotide polymorphism
Species:  Human
Description:  A rare Ser268 -> Pro polymorphism has been identified in the human receptor gene. The variant receptor possesses a marked reduction in coupling efficiency and is less desensitised upon agonist exposure.
Amino acid change:  S268P
References:  84
Biologically Significant Variant Comments
There are many additional polymorphisms of the μ receptor which are either without function or their functional significance is presently unknown.

References

Show »

1. Abbadie C, Pan YX, Pasternak GW. (2000) Differential distribution in rat brain of mu opioid receptor carboxy terminal splice variants MOR-1C-like and MOR-1-like immunoreactivity: evidence for region-specific processing. J Comp Neurol, 419 (2): 244-56. [PMID:10723002]

2. Abbadie C, Pan YX, Pasternak GW. (2004) Immunohistochemical study of the expression of exon11-containing mu opioid receptor variants in mouse brain. Neuroscience, 127 (2): 419-30. [PMID:15262332]

3. Abbadie C, Pasternak GW. (2001) Differential in vivo internalization of MOR-1 and MOR-1C by morphine. Neuroreport, 12 (14): 3069-72. [PMID:11568638]

4. Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q. (2006) Opioid receptor subtype-selective agents. Patent number: WO2006124687 A1. Assignee: Arora S, Keenan SM, Peng Y, Welsh W, Zhang Q.. Priority date: 12/05/2005. Publication date: 23/11/2006.

5. Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH, Dado RJ, Loh HH, Law PY, Wessendorf MW, Elde R. (1995) Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci, 15 (5 Pt 1): 3328-41. [PMID:7751913]

6. Avidor-Reiss T, Nevo I, Saya D, Bayewitch M, Vogel Z. (1997) Opiate-induced adenylyl cyclase superactivation is isozyme-specific. J Biol Chem, 272 (8): 5040-7. [PMID:9030567]

7. Bagnol D, Mansour A, Akil H, Watson SJ. (1997) Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience, 81 (2): 579-91. [PMID:9300443]

8. Baptista-Hon DT, Smith M, Singleton S, Antonides LH, Nic Daeid N, McKenzie C, Hales TG. (2020) Activation of μ-opioid receptors by MT-45 (1-cyclohexyl-4-(1,2-diphenylethyl)piperazine) and its fluorinated derivatives. Br J Pharmacol, 177 (15): 3436-3448. [PMID:32246840]

9. Becker A, Grecksch G, Brödemann R, Kraus J, Peters B, Schroeder H, Thiemann W, Loh HH, Höllt V. (2000) Morphine self-administration in mu-opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol, 361 (6): 584-9. [PMID:10882032]

10. Becker A, Grecksch G, Kraus J, Loh HH, Schroeder H, Höllt V. (2002) Rewarding effects of ethanol and cocaine in mu opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol, 365 (4): 296-302. [PMID:11919654]

11. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. (2001) A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem, 276 (5): 3130-7. [PMID:11067846]

12. Belcheva MM, Szùcs M, Wang D, Sadee W, Coscia CJ. (2001) mu-Opioid receptor-mediated ERK activation involves calmodulin-dependent epidermal growth factor receptor transactivation. J Biol Chem, 276 (36): 33847-53. [PMID:11457825]

13. Berrendero F, Kieffer BL, Maldonado R. (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci, 22 (24): 10935-40. [PMID:12486188]

14. Besse D, Lombard MC, Besson JM. (1991) Autoradiographic distribution of mu, delta and kappa opioid binding sites in the superficial dorsal horn, over the rostrocaudal axis of the rat spinal cord. Brain Res, 548 (1-2): 287-91. [PMID:1651143]

15. Bolan EA, Pan YX, Pasternak GW. (2004) Functional analysis of MOR-1 splice variants of the mouse mu opioid receptor gene Oprm. Synapse, 51 (1): 11-8. [PMID:14579421]

16. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM et al.. (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA, 95 (16): 9608-13. [PMID:9689128]

17. Bourinet E, Soong TW, Stea A, Snutch TP. (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci USA, 93 (4): 1486-91. [PMID:8643659]

18. Breslin HJ, Diamond CJ, Kavash RW, Cai C, Dyatkin AB, Miskowski TA, Zhang SP, Wade PR, Hornby PJ, He W. (2012) Identification of a dual δ OR antagonist/μ OR agonist as a potential therapeutic for diarrhea-predominant Irritable Bowel Syndrome (IBS-d). Bioorg Med Chem Lett, 22 (14): 4869-72. [PMID:22695132]

19. Burford NT, Clark MJ, Wehrman TS, Gerritz SW, Banks M, O'Connell J, Traynor JR, Alt A. (2013) Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc Natl Acad Sci USA, 110 (26): 10830-5. [PMID:23754417]

20. Carter BD, Medzihradsky F. (1993) Go mediates the coupling of the mu opioid receptor to adenylyl cyclase in cloned neural cells and brain. Proc Natl Acad Sci USA, 90 (9): 4062-6. [PMID:8097884]

21. Chakraborty S, DiBerto JF, Faouzi A, Bernhard SM, Gutridge AM, Ramsey S, Zhou Y, Provasi D, Nuthikattu N, Jilakara R et al.. (2021) A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. J Med Chem, 64 (18): 13873-13892. [PMID:34505767]

22. Chambers DR, Sulima A, Luo D, Prisinzano TE, Goldberg A, Xie B, Shi L, Paronis CA, Bergman J, Nassehi N et al.. (2022) A Journey through Diastereomeric Space: The Design, Synthesis, In Vitro and In Vivo Pharmacological Activity, and Molecular Modeling of Novel Potent Diastereomeric MOR Agonists and Antagonists. Molecules, 27 (19). DOI: 10.3390/molecules27196455 [PMID:36234992]

23. Chan JS, Chiu TT, Wong YH. (1995) Activation of type II adenylyl cyclase by the cloned mu-opioid receptor: coupling to multiple G proteins. J Neurochem, 65 (6): 2682-9. [PMID:7595566]

24. Chang KJ, Rigdon GC, Howard JL, McNutt RW. (1993) A novel, potent and selective nonpeptidic delta opioid receptor agonist BW373U86. J Pharmacol Exp Ther, 267 (2): 852-7. [PMID:8246159]

25. Chang KJ, Wei ET, Killian A, Chang JK. (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like activities. J Pharmacol Exp Ther, 227 (2): 403-8. [PMID:6313901]

26. Chefer VI, Kieffer BL, Shippenberg TS. (2003) Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR-knockout mice. Eur J Neurosci, 18 (7): 1915-22. [PMID:14622224]

27. Chen Y, Mestek A, Liu J, Hurley JA, Yu L. (1993) Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol, 44 (1): 8-12. [PMID:8393525]

28. Chen Z, Davies E, Miller WS, Shan S, Valenzano KJ, Kyle DJ. (2004) Design and synthesis of 4-phenyl piperidine compounds targeting the mu receptor. Bioorg Med Chem Lett, 14 (21): 5275-9. [PMID:15454210]

29. Cheney BV, Szmuszkovicz J, Lahti RA, Zichi DA. (1985) Factors affecting binding of trans-N-[2-(methylamino)cyclohexyl]benzamides at the primary morphine receptor. J Med Chem, 28 (12): 1853-64. [PMID:2999404]

30. Cheng JT, Liu IM, Hsu CF. (2003) Rapid induction of insulin resistance in opioid mu-receptor knock-out mice. Neurosci Lett, 339 (2): 139-42. [PMID:12614914]

31. Cheng PY, Liu-Chen LY, Pickel VM. (1997) Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res, 778 (2): 367-80. [PMID:9459554]

32. Cheng PY, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1996) Ultrastructural localization of mu-opioid receptors in the superficial layers of the rat cervical spinal cord: extrasynaptic localization and proximity to Leu5-enkephalin. Brain Res, 731 (1-2): 141-54. [PMID:8883864]

33. Chieng B, Connor M, Christie MJ. (1996) The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons. Mol Pharmacol, 50 (3): 650-5. [PMID:8794906]

34. Chuang TK, Killam Jr KF, Chuang LF, Kung HF, Sheng WS, Chao CC, Yu L, Chuang RY. (1995) Mu opioid receptor gene expression in immune cells. Biochem Biophys Res Commun, 216 (3): 922-30. [PMID:7488213]

35. Cometta-Morini C, Maguire PA, Loew GH. (1992) Molecular determinants of mu receptor recognition for the fentanyl class of compounds. Mol Pharmacol, 41 (1): 185-96. [PMID:1310142]

36. Connor M, Schuller A, Pintar JE, Christie MJ. (1999) Mu-opioid receptor modulation of calcium channel current in periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1. Br J Pharmacol, 126 (7): 1553-8. [PMID:10323586]

37. Contarino A, Picetti R, Matthes HW, Koob GF, Kieffer BL, Gold LH. (2002) Lack of reward and locomotor stimulation induced by heroin in mu-opioid receptor-deficient mice. Eur J Pharmacol, 446 (1-3): 103-9. [PMID:12098591]

38. Dekan Z, Sianati S, Yousuf A, Sutcliffe KJ, Gillis A, Mallet C, Singh P, Jin AH, Wang AM, Mohammadi SA et al.. (2019) A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proc Natl Acad Sci USA, 116 (44): 22353-22358. [PMID:31611414]

39. Delfs JM, Kong H, Mestek A, Chen Y, Yu L, Reisine T, Chesselet MF. (1994) Expression of mu opioid receptor mRNA in rat brain: an in situ hybridization study at the single cell level. J Comp Neurol, 345 (1): 46-68. [PMID:8089277]

40. Dietis N, McDonald J, Molinari S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. (2012) Pharmacological characterization of the bifunctional opioid ligand H-Dmt-Tic-Gly-NH-Bzl (UFP-505). Br J Anaesth, 108 (2): 262-70. [PMID:22194444]

41. Dietis N, Niwa H, Tose R, McDonald J, Ruggieri V, Filaferro M, Vitale G, Micheli L, Ghelardini C, Salvadori S et al.. (2018) In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505. Br J Pharmacol, 175 (14): 2881-2896. [PMID:29524334]

42. Ding YQ, Kaneko T, Nomura S, Mizuno N. (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol, 367 (3): 375-402. [PMID:8698899]

43. Ding YQ, Nomura S, Kaneko T, Mizuno N. (1995) Co-localization of mu-opioid receptor-like and substance P-like immunoreactivities in axon terminals within the superficial layers of the medullary and spinal dorsal horns of the rat. Neurosci Lett, 198 (1): 45-8. [PMID:8570093]

44. Ding YQ, Nomura S, Kaneko T, Mizuno N. (1995) Presynaptic localization of mu-opioid receptor-like immunoreactivity in retinal axon terminals within the terminal nuclei of the accessory optic tract: a light and electron microscope study in the rat. Neurosci Lett, 199 (2): 139-42. [PMID:8584243]

45. Fan XL, Zhang JS, Zhang XQ, Ma L. (2003) Chronic morphine treatment and withdrawal induce up-regulation of c-Jun N-terminal kinase 3 gene expression in rat brain. Neuroscience, 122 (4): 997-1002. [PMID:14643766]

46. Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gavériaux-Ruff C, Dierich A, LeMeur M et al.. (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet, 25 (2): 195-200. [PMID:10835636]

47. Fukuda K, Kato S, Mori K, Nishi M, Takeshima H. (1993) Primary structures and expression from cDNAs of rat opioid receptor delta- and mu-subtypes. FEBS Lett, 327: 311-314. [PMID:8394245]

48. Fukuda K, Kato S, Morikawa H, Shoda T, Mori K. (1996) Functional coupling of the delta-, mu-, and kappa-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J Neurochem, 67 (3): 1309-16. [PMID:8752140]

49. Fulton BS, Knapp BI, Bidlack JM, Neumeyer JL. (2008) Synthesis and pharmacological evaluation of hydrophobic esters and ethers of butorphanol at opioid receptors. Bioorg Med Chem Lett, 18 (16): 4474-6. [PMID:18674902]

50. Gavériaux-Ruff C, Matthes HW, Peluso J, Kieffer BL. (1998) Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc Natl Acad Sci USA, 95 (11): 6326-30. [PMID:9600964]

51. George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O'Dowd BF. (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem, 275 (34): 26128-35. [PMID:10842167]

52. George SR, Zastawny RL, Briones-Urbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS, O'Dowd BF. (1994) Distinct distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun, 205 (2): 1438-44. [PMID:7802680]

53. Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R. (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci, 22 (3): 1146-54. [PMID:11826143]

54. Glatfelter GC, Vandeputte MM, Chen L, Walther D, Tsai MM, Shi L, Stove CP, Baumann MH. (2023) Alkoxy chain length governs the potency of 2-benzylbenzimidazole 'nitazene' opioids associated with human overdose. Psychopharmacology (Berl), 240 (12): 2573-2584. [PMID:37658878]

55. Goldstein A, Naidu A. (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol, 36 (2): 265-72. [PMID:2549383]

56. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. (2000) Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J Neurosci, 20 (22): RC110. [PMID:11069979]

57. Gong J, Strong JA, Zhang S, Yue X, DeHaven RN, Daubert JD, Cassel JA, Yu G, Mansson E, Yu L. (1998) Endomorphins fully activate a cloned human mu opioid receptor. FEBS Lett, 439 (1-2): 152-6. [PMID:9849897]

58. Guerrero M, Urbano M, Kim EK, Gamo AM, Riley S, Abgaryan L, Leaf N, Van Orden LJ, Brown SJ, Xie JY et al.. (2019) Design and Synthesis of a Novel and Selective Kappa Opioid Receptor (KOR) Antagonist (BTRX-335140). J Med Chem, 62 (4): 1761-1780. [PMID:30707578]

59. Gulya K, Pelton JT, Hruby VJ, Yamamura HI. (1986) Cyclic somatostatin octapeptide analogues with high affinity and selectivity toward mu opioid receptors. Life Sci, 38 (24): 2221-9. [PMID:2872570]

60. Gutman ES, Bow E, Li F, Sulima A, Kaska S, Crowley R, Prisinzano TE, Lee YS, Hassan SA, Imler GH et al.. (2020) G-Protein biased opioid agonists: 3-hydroxy-N-phenethyl-5-phenylmorphans with three-carbon chain substituents at C9. RSC Med Chem, 11 (8): 896-904. [PMID:33479684]

61. Hall FS, Goeb M, Li XF, Sora I, Uhl GR. (2004) mu-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res, 121 (1-2): 123-30. [PMID:14969743]

62. Hall FS, Sora I, Uhl GR. (2001) Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl.), 154 (1): 43-9. [PMID:11292005]

63. Handa BK, Land AC, Lord JA, Morgan BA, Rance MJ, Smith CF. (1981) Analogues of beta-LPH61-64 possessing selective agonist activity at mu-opiate receptors. Eur J Pharmacol, 70 (4): 531-40. [PMID:6263640]

64. Handler CM, Geller EB, Adler MW. (1992) Effect of mu-, kappa-, and delta-selective opioid agonists on thermoregulation in the rat. Pharmacol Biochem Behav, 43 (4): 1209-16. [PMID:1361992]

65. Hanessian S, Parthasarathy S, Mauduit M, Payza K. (2003) The power of visual imagery in drug design. Isopavines as a new class of morphinomimetics and their human opioid receptor binding activity. J Med Chem, 46 (1): 34-48. [PMID:12502358]

66. Hawkins KN, Morelli M, Gulya K, Chang KJ, Yamamura HI. (1987) Autoradiographic localization of [3H] [MePhe3,D-Pro4]morphiceptin ([3H]PL017) to mu opioid receptors in rat brain. Eur J Pharmacol, 133 (3): 351-2. [PMID:3030778]

67. Henriksen G, Platzer S, Marton J, Hauser A, Berthele A, Schwaiger M, Marinelli L, Lavecchia A, Novellino E, Wester HJ. (2005) Syntheses, biological evaluation, and molecular modeling of 18F-labeled 4-anilidopiperidines as mu-opioid receptor imaging agents. J Med Chem, 48 (24): 7720-32. [PMID:16302812]

68. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature, 380 (6571): 258-62. [PMID:8637576]

69. Hiebel AC, Lee YS, Bilsky E, Giuvelis D, Deschamps JR, Parrish DA, Aceto MD, May EL, Harris LS, Coop A et al.. (2007) Probes for narcotic receptor mediated phenomena. 34. Synthesis and structure-activity relationships of a potent mu-agonist delta-antagonist and an exceedingly potent antinociceptive in the enantiomeric C9-substituted 5-(3-hydroxyphenyl)-N-phenylethylmorphan series. J Med Chem, 50 (16): 3765-76. [PMID:17625813]

70. Ho MK, New DC, Wong YH. (2002) Co-expressions of different opioid receptor types differentially modulate their signaling via G(16). Neurosignals, 11 (2): 115-22. [PMID:12077485]

71. Husbands SM, Lewis JW. (1995) Morphinan cyclic imines and pyrrolidines containing a constrained phenyl group: high affinity opioid agonists. Bioorg Med Chem Lett, 5: 2969–2974.

72. Hutcheson DM, Matthes HW, Valjent E, Sánchez-Blázquez P, Rodríguez-Díaz M, Garzón J, Kieffer BL, Maldonado R. (2001) Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice. Eur J Neurosci, 13 (1): 153-61. [PMID:11135013]

73. Inagaki M, Kume M, Tamura Y, Hara S, Goto Y, Haga N, Hasegawa T, Nakamura T, Koike K, Oonishi S et al.. (2019) Discovery of naldemedine: A potent and orally available opioid receptor antagonist for treatment of opioid-induced adverse effects. Bioorg Med Chem Lett, 29 (1): 73-77. [PMID:30446313]

74. Jamot L, Matthes HW, Simonin F, Kieffer BL, Roder JC. (2003) Differential involvement of the mu and kappa opioid receptors in spatial learning. Genes Brain Behav, 2 (2): 80-92. [PMID:12884965]

75. Jang CG, Lee SY, Yoo JH, Yan JJ, Song DK, Loh HH, Ho IK. (2003) Impaired water maze learning performance in mu-opioid receptor knockout mice. Brain Res Mol Brain Res, 117 (1): 68-72. [PMID:14499482]

76. Jongkamonwiwat N, Phansuwan-Pujito P, Sarapoke P, Chetsawang B, Casalotti SO, Forge A, Dodson H, Govitrapong P. (2003) The presence of opioid receptors in rat inner ear. Hear Res, 181 (1-2): 85-93. [PMID:12855366]

77. Kam AY, Chan AS, Wong YH. (2004) Phosphatidylinositol-3 kinase is distinctively required for mu-, but not kappa-opioid receptor-induced activation of c-Jun N-terminal kinase. J Neurochem, 89 (2): 391-402. [PMID:15056283]

78. Kaneko T, Minami M, Satoh M, Mizuno N. (1995) Immunocytochemical localization of mu-opioid receptor in the rat caudate-putamen. Neurosci Lett, 184 (3): 149-52. [PMID:7715834]

79. Kelly E, Mundell SJ, Sava A, Roth AL, Felici A, Maltby K, Nathan PJ, Bullmore ET, Henderson G. (2015) The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours. Psychopharmacology (Berl.), 232 (1): 305-14. [PMID:24973897]

80. Kennedy NM, Schmid CL, Ross NC, Lovell KM, Yue Z, Chen YT, Cameron MD, Bohn LM, Bannister TD. (2018) Optimization of a Series of Mu Opioid Receptor (MOR) Agonists with High G Protein Signaling Bias. J Med Chem, 61 (19): 8895-8907. [PMID:30199635]

81. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L. (2011) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther, 336 (3): 952-61. [PMID:21177476]

82. Kitchen I, Slowe SJ, Matthes HW, Kieffer B. (1997) Quantitative autoradiographic mapping of mu-, delta- and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res, 778 (1): 73-88. [PMID:9462879]

83. Koch T, Brandenburg LO, Schulz S, Liang Y, Klein J, Hollt V. (2003) ADP-ribosylation factor-dependent phospholipase D2 activation is required for agonist-induced mu-opioid receptor endocytosis. J Biol Chem, 278: 9979-9985. [PMID:12519790]

84. Koch T, Kroslak T, Averbeck M, Mayer P, Schröder H, Raulf E, Höllt V. (2000) Allelic variation S268P of the human mu-opioid receptor affects both desensitization and G protein coupling. Mol Pharmacol, 58 (2): 328-34. [PMID:10908300]

85. Koch T, Schulz S, Pfeiffer M, Klutzny M, Schröder H, Kahl E, Höllt V. (2001) C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem, 276 (33): 31408-14. [PMID:11359768]

86. Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, Latorraca NR, Hilger D, Dawson R, Matile H et al.. (2018) Structure of the µ-opioid receptor-Gi protein complex. Nature, 558 (7711): 547-552. [PMID:29899455]

87. Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA. (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev, 57 (1): 1-26. [PMID:15734726]

88. Kumar V, Guo D, Marella M, Cassel JA, Dehaven RN, Daubert JD, Mansson E. (2008) Use of receptor chimeras to identify small molecules with high affinity for the dynorphin A binding domain of the kappa opioid receptor. Bioorg Med Chem Lett, 18 (12): 3667-71. [PMID:18487043]

89. Kvam TM, Baar C, Rakvåg TT, Kaasa S, Krokan HE, Skorpen F. (2004) Genetic analysis of the murine mu opioid receptor: increased complexity of Oprm gene splicing. J Mol Med, 82 (4): 250-5. [PMID:14991152]

90. Le Bourdonnec B, Barker WM, Belanger S, Wiant DD, Conway-James NC, Cassel JA, O'Neill TJ, Little PJ, DeHaven RN, DeHaven-Hudkins DL et al.. (2008) Novel trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines as mu opioid receptor antagonists with improved opioid receptor selectivity profiles. Bioorg Med Chem Lett, 18 (6): 2006-12. [PMID:18313920]

91. Le Bourdonnec B, Windh RT, Ajello CW, Leister LK, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD et al.. (2008) Potent, orally bioavailable delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5859). J Med Chem, 51 (19): 5893-6. [PMID:18788723]

92. Le Bourdonnec B, Windh RT, Leister LK, Zhou QJ, Ajello CW, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M et al.. (2009) Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5747). J Med Chem, 52 (18): 5685-702. [PMID:19694468]

93. Lee JW, Joshi S, Chan JS, Wong YH. (1998) Differential coupling of mu-, delta-, and kappa-opioid receptors to G alpha16-mediated stimulation of phospholipase C. J Neurochem, 70 (5): 2203-11. [PMID:9572309]

94. Lei W, Vekariya RH, Ananthan S, Streicher JM. (2020) A Novel Mu-Delta Opioid Agonist Demonstrates Enhanced Efficacy With Reduced Tolerance and Dependence in Mouse Neuropathic Pain Models. J Pain, 21 (1-2): 146-160. [PMID:31201990]

95. Li JL, Ding YQ, Li YQ, Li JS, Nomura S, Kaneko T, Mizuno N. (1998) Immunocytochemical localization of mu-opioid receptor in primary afferent neurons containing substance P or calcitonin gene-related peptide. A light and electron microscope study in the rat. Brain Res, 794 (2): 347-52. [PMID:9622672]

96. Li LY, Chang KJ. (1996) The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol Pharmacol, 50 (3): 599-602. [PMID:8794899]

97. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schröder W, Kögel BY, Beier H, Englberger W et al.. (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther, 349 (3): 535-48. [PMID:24713140]

98. Livingston KE, Stanczyk MA, Burford NT, Alt A, Canals M, Traynor JR. (2018) Pharmacologic Evidence for a Putative Conserved Allosteric Site on Opioid Receptors. Mol Pharmacol, 93 (2): 157-167. [PMID:29233847]

99. Loh HH, Liu HC, Cavalli A, Yang W, Chen YF, Wei LN. (1998) mu Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res, 54 (2): 321-6. [PMID:9555078]

100. Lötsch J, Geisslinger G. (2005) Are mu-opioid receptor polymorphisms important for clinical opioid therapy?. Trends Mol Med, 11 (2): 82-9. [PMID:15694871]

101. Majumdar S, Burgman M, Haselton N, Grinnell S, Ocampo J, Pasternak AR, Pasternak GW. (2011) Generation of novel radiolabeled opiates through site-selective iodination. Bioorg Med Chem Lett, 21 (13): 4001-4. [PMID:21621410]

102. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. (2012) Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature, 485 (7398): 321-6. [PMID:22437502]

103. Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hübner H et al.. (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature, 537 (7619): 185-190. [PMID:27533032]

104. Mangoura D. (1997) mu-Opioids activate tyrosine kinase focal adhesion kinase and regulate cortical cytoskeleton proteins cortactin and vinculin in chick embryonic neurons. J Neurosci Res, 50 (3): 391-401. [PMID:9364324]

105. Mansour A, Fox CA, Akil H, Watson SJ. (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci, 18: 22-29. [PMID:7535487]

106. Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ. (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol, 350: 412-438. [PMID:7884049]

107. Mansour A, Fox CA, Thompson RC, Akil H, Watson SJ. (1994) mu-Opioid receptor mRNA expression in the rat CNS: comparison to mu-receptor binding. Brain Res, 643 (1-2): 245-65. [PMID:8032920]

108. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci, 7 (8): 2445-64. [PMID:3039080]

109. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dollé P et al.. (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature, 383 (6603): 819-23. [PMID:8893006]

110. Matthies H, Schroeder H, Becker A, Loh H, Höllt V, Krug M. (2000) Lack of expression of long-term potentiation in the dentate gyrus but not in the CA1 region of the hippocampus of mu-opioid receptor-deficient mice. Neuropharmacology, 39 (6): 952-60. [PMID:10727705]

111. Mayer P, Höllt V. (2005) Genetic disposition to addictive disorders--current knowledge and future perspectives. Curr Opin Pharmacol, 5 (1): 4-8. [PMID:15661619]

112. Mayer P, Schulzeck S, Kraus J, Zimprich A, Höllt V. (1996) Promoter region and alternatively spliced exons of the rat mu-opioid receptor gene. J Neurochem, 66 (6): 2272-8. [PMID:8632148]

113. McCarthy L, Szabo I, Nitsche JF, Pintar JE, Rogers TJ. (2001) Expression of functional mu-opioid receptors during T cell development. J Neuroimmunol, 114 (1-2): 173-80. [PMID:11240029]

114. Min BH, Augustin LB, Felsheim RF, Fuchs JA, Loh HH. (1994) Genomic structure analysis of promoter sequence of a mouse mu opioid receptor gene. Proc Natl Acad Sci USA, 91 (19): 9081-5. [PMID:8090773]

115. Minami M, Onogi T, Toya T, Katao Y, Hosoi Y, Maekawa K, Katsumata S, Yabuuchi K, Satoh M. (1994) Molecular cloning and in situ hybridization histochemistry for rat mu-opioid receptor. Neurosci Res, 18: 315-322. [PMID:8190373]

116. Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI. (2003) Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences. Proc Natl Acad Sci USA, 100 (1): 271-6. [PMID:12496346]

117. Miyazaki T, Choi IY, Rubas W, Anand NK, Ali C, Evans J, Gursahani H, Hennessy M, Kim G, McWeeney D et al.. (2017) NKTR-181: A Novel Mu-Opioid Analgesic with Inherently Low Abuse Potential. J Pharmacol Exp Ther, 363 (1): 104-113. [PMID:28778859]

118. Moles A, Kieffer BL, D'Amato FR. (2004) Deficit in attachment behavior in mice lacking the mu-opioid receptor gene. Science, 304 (5679): 1983-6. [PMID:15218152]

119. Morikawa H, Fukuda K, Kato S, Mori K, Higashida H. (1995) Coupling of the cloned mu-opioid receptor with the omega-conotoxin-sensitive Ca2+ current in NG108-15 cells. J Neurochem, 65 (3): 1403-6. [PMID:7643119]

120. Morinville A, Cahill CM, Esdaile MJ, Aibak H, Collier B, Kieffer BL, Beaudet A. (2003) Regulation of delta-opioid receptor trafficking via mu-opioid receptor stimulation: evidence from mu-opioid receptor knock-out mice. J Neurosci, 23 (12): 4888-98. [PMID:12832511]

121. Morinville A, Cahill CM, Kieffer B, Collier B, Beaudet A. (2004) Mu-opioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain, 109 (3): 266-73. [PMID:15157687]

122. Moriwaki A, Wang JB, Svingos A, van Bockstaele E, Cheng P, Pickel V, Uhl GR. (1996) mu Opiate receptor immunoreactivity in rat central nervous system. Neurochem Res, 21 (11): 1315-31. [PMID:8947922]

123. Mrkusich EM, Kivell BM, Miller JH, Day DJ. (2004) Abundant expression of mu and delta opioid receptor mRNA and protein in the cerebellum of the fetal, neonatal, and adult rat. Brain Res Dev Brain Res, 148: 213-222. [PMID:14766199]

124. Murray RB, Adler MW, Korczyn AD. (1983) The pupillary effects of opioids. Life Sci, 33: 495-509. [PMID:6136886]

125. Murthy KS, Makhlouf GM. (1996) Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle. Mol Pharmacol, 50 (4): 870-7. [PMID:8863832]

126. Narita M, Imai S, Narita M, Kasukawa A, Yajima Y, Suzuki T. (2004) Increased level of neuronal phosphoinositide 3-kinase gamma by the activation of mu-opioid receptor in the mouse periaqueductal gray matter: further evidence for the implication in morphine-induced antinociception. Neuroscience, 124 (3): 515-21. [PMID:14980723]

127. Narita M, Imai S, Ozaki S, Suzuki M, Narita M, Suzuki T. (2003) Reduced expression of a novel mu-opioid receptor (MOR) subtype MOR-1B in CXBK mice: implications of MOR-1B in the expression of MOR-mediated responses. Eur J Neurosci, 18 (12): 3193-8. [PMID:14686893]

128. Neumeyer JL, Zhang B, Zhang T, Sromek AW, Knapp BI, Cohen DJ, Bidlack JM. (2012) Synthesis, binding affinity, and functional in vitro activity of 3-benzylaminomorphinan and 3-benzylaminomorphine ligands at opioid receptors. J Med Chem, 55 (8): 3878-90. [PMID:22439881]

129. Nikolaev VO, Boettcher C, Dees C, Bünemann M, Lohse MJ, Zenk MH. (2007) Live cell monitoring of mu-opioid receptor-mediated G-protein activation reveals strong biological activity of close morphine biosynthetic precursors. J Biol Chem, 282 (37): 27126-27132. [PMID:17616524]

130. North RA, Williams JT, Surprenant A, Christie MJ. (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA, 84 (15): 5487-91. [PMID:2440052]

131. Pak Y, Kouvelas A, Scheideler MA, Rasmussen J, O'Dowd BF, George SR. (1996) Agonist-induced functional desensitization of the mu-opioid receptor is mediated by loss of membrane receptors rather than uncoupling from G protein. Mol Pharmacol, 50 (5): 1214-22. [PMID:8913353]

132. Pan YX, Xu J, Mahurter L, Bolan E, Xu M, Pasternak GW. (2001) Generation of the mu opioid receptor (MOR-1) protein by three new splice variants of the Oprm gene. Proc Natl Acad Sci USA, 98 (24): 14084-9. [PMID:11717463]

133. Patkar KA, Yan X, Murray TF, Aldrich JV. (2005) [Nalpha-benzylTyr1,cyclo(D-Asp5,Dap8)]- dynorphin A-(1-11)NH2 cyclized in the "address" domain is a novel kappa-opioid receptor antagonist. J Med Chem, 48 (14): 4500-3. [PMID:15999987]

134. Pfeiffer M, Kirscht S, Stumm R, Koch T, Wu D, Laugsch M, Schröder H, Höllt V, Schulz S. (2003) Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem, 278 (51): 51630-7. [PMID:14532289]

135. Phansuwan-Pujito P, Saleema L, Mukda S, Tongjaroenbuangam W, Jutapakdeegul N, Casalotti SO, Forge A, Dodson H, Govitrapong P. (2003) The opioid receptors in inner ear of different stages of postnatal rats. Hear Res, 184: 1-10. [PMID:14553898]

136. Philippe D, Dubuquoy L, Groux H, Brun V, Chuoï-Mariot MT, Gaveriaux-Ruff C, Colombel JF, Kieffer BL, Desreumaux P. (2003) Anti-inflammatory properties of the mu opioid receptor support its use in the treatment of colon inflammation. J Clin Invest, 111 (9): 1329-38. [PMID:12727924]

137. Piros ET, Prather PL, Law PY, Evans CJ, Hales TG. (1996) Voltage-dependent inhibition of Ca2+ channels in GH3 cells by cloned mu- and delta-opioid receptors. Mol Pharmacol, 50 (4): 947-56. [PMID:8863841]

138. Piros ET, Prather PL, Loh HH, Law PY, Evans CJ, Hales TG. (1995) Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells. Mol Pharmacol, 47 (5): 1041-9. [PMID:7746271]

139. Poeaknapo C, Schmidt J, Brandsch M, Dräger B, Zenk MH. (2004) Endogenous formation of morphine in human cells. Proc Natl Acad Sci USA, 101 (39): 14091-6. [PMID:15383669]

140. Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier MC, Déprez B. (2001) From hit to lead. Combining two complementary methods for focused library design. Application to mu opiate ligands. J Med Chem, 44 (21): 3378-90. [PMID:11585443]

141. Prchalová E, Hin N, Thomas AG, Veeravalli V, Ng J, Alt J, Rais R, Rojas C, Li Z, Hihara H et al.. (2019) Discovery of Benzamidine- and 1-Aminoisoquinoline-Based Human MAS-Related G-Protein-Coupled Receptor X1 (MRGPRX1) Agonists. J Med Chem, 62 (18): 8631-8641. [PMID:31498617]

142. Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T. (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol, 45 (2): 330-4. [PMID:8114680]

143. Rhim H, Miller RJ. (1994) Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius of the rat. J Neurosci, 14 (12): 7608-15. [PMID:7996199]

144. Rorick-Kehn LM, Witkin JM, Statnick MA, Eberle EL, McKinzie JH, Kahl SD, Forster BM, Wong CJ, Li X, Crile RS et al.. (2014) LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders. Neuropharmacology, 77: 131-44. [PMID:24071566]

145. Roy S, Balasubramanian S, Sumandeep S, Charboneau R, Wang J, Melnyk D, Beilman GJ, Vatassery R, Barke RA. (2001) Morphine directs T cells toward T(H2) differentiation. Surgery, 130 (2): 304-9. [PMID:11490364]

146. Roy S, Barke RA, Loh HH. (1998) MU-opioid receptor-knockout mice: role of mu-opioid receptor in morphine mediated immune functions. Brain Res Mol Brain Res, 61 (1-2): 190-4. [PMID:9795212]

147. Scherrer G, Befort K, Contet C, Becker J, Matifas A, Kieffer BL. (2004) The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. Eur J Neurosci, 19 (8): 2239-48. [PMID:15090050]

148. Schnell SA, Wessendorf MW. (2004) Expression of MOR1C-like mu-opioid receptor mRNA in rats. J Comp Neurol, 473 (2): 213-32. [PMID:15101090]

149. Schulz S, Schreff M, Koch T, Zimprich A, Gramsch C, Elde R, Höllt V. (1998) Immunolocalization of two mu-opioid receptor isoforms (MOR1 and MOR1B) in the rat central nervous system. Neuroscience, 82 (2): 613-22. [PMID:9466465]

150. Sharif NA, Hughes J. (1989) Discrete mapping of brain Mu and delta opioid receptors using selective peptides: quantitative autoradiography, species differences and comparison with kappa receptors. Peptides, 10 (3): 499-522. [PMID:2550910]

151. Sim LJ, Selley DE, Childers SR. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5'-[gamma-[35S]thio]-triphosphate binding. Proc Natl Acad Sci USA, 92 (16): 7242-6. [PMID:7638174]

152. Singhal P, Kapasi A, Reddy K, Franki N. (2001) Opiates promote T cell apoptosis through JNK and caspase pathway. Adv Exp Med Biol, 493: 127-135. [PMID:11727758]

153. Sora I, Funada M, Uhl GR. (1997) The mu-opioid receptor is necessary for [D-Pen2,D-Pen5]enkephalin-induced analgesia. Eur J Pharmacol, 324 (2-3): R1-2. [PMID:9145787]

154. Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR. (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA, 94 (4): 1544-9. [PMID:9037090]

155. Spetea M, Berzetei-Gurske IP, Guerrieri E, Schmidhammer H. (2012) Discovery and pharmacological evaluation of a diphenethylamine derivative (HS665), a highly potent and selective κ opioid receptor agonist. J Med Chem, 55 (22): 10302-6. [PMID:23134120]

156. Ständer S, Gunzer M, Metze D, Luger T, Steinhoff M. (2002) Localization of mu-opioid receptor 1A on sensory nerve fibers in human skin. Regul Pept, 110 (1): 75-83. [PMID:12468112]

157. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1996) Ultrastructural immunocytochemical localization of mu-opioid receptors in rat nucleus accumbens: extrasynaptic plasmalemmal distribution and association with Leu5-enkephalin. J Neurosci, 16 (13): 4162-73. [PMID:8753878]

158. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1997) mu-Opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J Neurosci, 17 (7): 2585-94. [PMID:9065518]

159. Tempel A, Zukin RS. (1987) Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci USA, 84 (12): 4308-12. [PMID:3035579]

160. Thompson RC, Mansour A, Akil H, Watson SJ. (1993) Cloning and pharmacological characterization of a rat mu opioid receptor. Neuron, 11 (5): 903-13. [PMID:8240812]

161. Tian M, Broxmeyer HE, Fan Y, Lai Z, Zhang S, Aronica S, Cooper S, Bigsby RM, Steinmetz R, Engle SJ, Mestek A, Pollock JD, Lehman MN, Jansen HT, Ying M, Stambrook PJ, Tischfield JA, Yu L. (1997) Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J Exp Med, 185: 1517-1522. [PMID:9126934]

162. Tien LT, Fan LW, Sogawa C, Ma T, Loh HH, Ho IK. (2004) Changes in acetylcholinesterase activity and muscarinic receptor bindings in mu-opioid receptor knockout mice. Brain Res Mol Brain Res, 126 (1): 38-44. [PMID:15207914]

163. Tien LT, Park Y, Fan LW, Ma T, Loh HH, Ho IK. (2003) Increased dopamine D2 receptor binding and enhanced apomorphine-induced locomotor activity in mu-opioid receptor knockout mice. Brain Res Bull, 61 (1): 109-15. [PMID:12788214]

164. Toll L. (1990) Mu-opioid receptor binding in intact SH-SY5Y neuroblastoma cells. Eur J Pharmacol, 176 (2): 213-7. [PMID:1968847]

165. Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A et al.. (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr, 178: 440-66. [PMID:9686407]

166. Toll L, Khroyan TV, Polgar WE, Jiang F, Olsen C, Zaveri NT. (2009) Comparison of the antinociceptive and antirewarding profiles of novel bifunctional nociceptin receptor/mu-opioid receptor ligands: implications for therapeutic applications. J Pharmacol Exp Ther, 331 (3): 954-64. [PMID:19773529]

167. Trafton JA, Abbadie C, Marek K, Basbaum AI. (2000) Postsynaptic signaling via the [mu]-opioid receptor: responses of dorsal horn neurons to exogenous opioids and noxious stimulation. J Neurosci, 20 (23): 8578-84. [PMID:11102461]

168. Tzschentke TM, Christoph T, Kögel B, Schiene K, Hennies HH, Englberger W, Haurand M, Jahnel U, Cremers TI, Friderichs E et al.. (2007) (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther, 323 (1): 265-76. [PMID:17656655]

169. Ueda H, Miyamae T, Fukushima N, Takeshima H, Fukuda K, Sasaki Y, Misu Y. (1995) Opioid mu- and kappa-receptor mediate phospholipase C activation through Gi1 in Xenopus oocytes. Brain Res Mol Brain Res, 32 (1): 166-70. [PMID:7494457]

170. Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S et al.. (2016) Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J Med Chem, 59 (18): 8381-97. [PMID:27556704]

171. Van Bockstaele EJ, Colago EE, Cheng P, Moriwaki A, Uhl GR, Pickel VM. (1996) Ultrastructural evidence for prominent distribution of the mu-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleus locus coeruleus. J Neurosci, 16: 5037-5048. [PMID:8756434]

172. Van Bockstaele EJ, Colago EE, Moriwaki A, Uhl GR. (1996) Mu-opioid receptor is located on the plasma membrane of dendrites that receive asymmetric synapses from axon terminals containing leucine-enkephalin in the rat nucleus locus coeruleus. J Comp Neurol, 376 (1): 65-74. [PMID:8946284]

173. Vandeputte MM, Tsai MM, Chen L, Glatfelter GC, Walther D, Stove CP, Shi L, Baumann MH. (2023) Comparative neuropharmacology of structurally distinct non-fentanyl opioids that are appearing on recreational drug markets worldwide. Drug Alcohol Depend, 249: 109939. [PMID:37276825]

174. Varty GB, Lu SX, Morgan CA, Cohen-Williams ME, Hodgson RA, Smith-Torhan A, Zhang H, Fawzi AB, Graziano MP, Ho GD et al.. (2008) The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J Pharmacol Exp Ther, 326 (2): 672-82. [PMID:18492950]

175. Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, Trapella C, Lazarus LH, Regoli D, Guerrini R et al.. (2008) Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides, 29 (1): 93-103. [PMID:18069089]

176. Volpe DA, McMahon Tobin GA, Mellon RD, Katki AG, Parker RJ, Colatsky T, Kropp TJ, Verbois SL. (2011) Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol, 59 (3): 385-90. [PMID:21215785]

177. Wang D, Tolbert LM, Carlson KW, Sadée W. (2000) Nuclear Ca2+/calmodulin translocation activated by mu-opioid (OP3) receptor. J Neurochem, 74 (4): 1418-25. [PMID:10737597]

178. Wang H, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1997) Ultrastructural immunocytochemical localization of mu-opioid receptors in dendritic targets of dopaminergic terminals in the rat caudate-putamen nucleus. Neuroscience, 81 (3): 757-71. [PMID:9316027]

179. Wang J, Barke RA, Charboneau R, Loh HH, Roy S. (2003) Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J Biol Chem, 278 (39): 37622-31. [PMID:12842891]

180. Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR. (1993) mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci USA, 90 (21): 10230-4. [PMID:8234282]

181. Wang JB, Johnson PS, Persico AM, Hawkins AL, Griffin CA, Uhl GR. (1994) Human mu opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett, 338 (2): 217-22. [PMID:7905839]

182. Wentland MP, Lou R, Lu Q, Bu Y, Denhardt C, Jin J, Ganorkar R, VanAlstine MA, Guo C, Cohen DJ et al.. (2009) Syntheses of novel high affinity ligands for opioid receptors. Bioorg Med Chem Lett, 19 (8): 2289-94. [PMID:19282177]

183. Wentland MP, Lu Q, Lou R, Bu Y, Knapp BI, Bidlack JM. (2005) Synthesis and opioid receptor binding properties of a highly potent 4-hydroxy analogue of naltrexone. Bioorg Med Chem Lett, 15 (8): 2107-10. [PMID:15808478]

184. Xie CW, Morrisett RA, Lewis DV. (1992) Mu opioid receptor-mediated modulation of synaptic currents in dentate granule cells of rat hippocampus. J Neurophysiol, 68 (4): 1113-20. [PMID:1359026]

185. Yeadon M, Kitchen I. (1988) Comparative binding of mu and delta selective ligands in whole brain and pons/medulla homogenates from rat: affinity profiles of fentanyl derivatives. Neuropharmacology, 27 (4): 345-8. [PMID:2843777]

186. Yoo JH, Yang EM, Lee SY, Loh HH, Ho IK, Jang CG. (2003) Differential effects of morphine and cocaine on locomotor activity and sensitization in mu-opioid receptor knockout mice. Neurosci Lett, 344 (1): 37-40. [PMID:12781916]

187. Yoshimura M, Ikeda H, Tabakoff B. (1996) mu-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase. Mol Pharmacol, 50 (1): 43-51. [PMID:8700117]

188. Yu VC, Eiger S, Duan DS, Lameh J, Sadée W. (1990) Regulation of cyclic AMP by the mu-opioid receptor in human neuroblastoma SH-SY5Y cells. J Neurochem, 55 (4): 1390-6. [PMID:1697894]

189. Yuen JW, So IY, Kam AY, Wong YH. (2004) Regulation of STAT3 by mu-opioid receptors in human neuroblastoma SH-SY5Y cells. Neuroreport, 15 (9): 1431-5. [PMID:15194868]

190. Zadina JE, Hackler L, Ge LJ, Kastin AJ. (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature, 386 (6624): 499-502. [PMID:9087409]

191. Zastawny RL, George SR, Nguyen T, Cheng R, Tsatsos J, Briones-Urbina R, O'Dowd BF. (1994) Cloning, characterization, and distribution of a mu-opioid receptor in rat brain. J Neurochem, 62 (6): 2099-105. [PMID:8189219]

192. Zaveri NT, Journigan VB, Polgar WE. (2015) Discovery of the first small-molecule opioid pan antagonist with nanomolar affinity at mu, delta, kappa, and nociceptin opioid receptors. ACS Chem Neurosci, 6 (4): 646-57. [PMID:25635572]

193. Zheng Y, Obeng S, Wang H, Jali AM, Peddibhotla B, Williams DA, Zou C, Stevens DL, Dewey WL, Akbarali HI et al.. (2019) Design, Synthesis, and Biological Evaluation of the Third Generation 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan (NAP) Derivatives as μ/κ Opioid Receptor Dual Selective Ligands. J Med Chem, 62 (2): 561-574. [PMID:30608693]

194. Zhu Y, Pintar JE. (1998) Expression of opioid receptors and ligands in pregnant mouse uterus and placenta. Biol Reprod, 59 (4): 925-32. [PMID:9746745]

195. Zimprich A, Simon T, Höllt V. (1995) Cloning and expression of an isoform of the rat mu opioid receptor (rMOR1B) which differs in agonist induced desensitization from rMOR1. FEBS Lett, 359 (2-3): 142-6. [PMID:7532594]

Contributors

Show »

How to cite this page