Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (PENK, P01210) (met), [Leu]enkephalin (PENK, P01210) (leu), β-endorphin (POMC, P01189) (β-end), α-neodynorphin (PDYN, P01213), dynorphin A (PDYN, P01213) (dynA), dynorphin B (PDYN, P01213) (dynB), big dynorphin (PDYN, P01213) (Big dyn), nociceptin/orphanin FQ (PNOC, Q13519) (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP [20-21,31]. However the acronyms MOR, DOR and KOR are still widely used in the literature. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [63], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone. The majority of clinically used opiates are relatively selective μ agonists or partial agonists, though there are some μ/κ compounds, such as butorphanol, in clinical use. κ opioid agonists, such as the alkaloid nalfurafine and the peripherally acting peptide difelikefalin, are in clinical use for itch.
δ receptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
κ receptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
μ receptor C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NOP receptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
* Butelman ER, Yuferov V, Kreek MJ. (2012) κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci, 35 (10): 587-96. [PMID:22709632]
Chaudun F, Python L, Liu Y, Hiver A, Cand J, Kieffer BL, Valjent E, Lüscher C. (2024) Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement. Nature, 630 (8015): 141-148. [PMID:38778097]
* Cox BM, Christie MJ, Devi L, Toll L, Traynor JR. (2015) Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br J Pharmacol, 172 (2): 317-23. [PMID:24528283]
* Gillis A, Sreenivasan V, Christie MJ. (2020) Intrinsic Efficacy of Opioid Ligands and Its Importance for Apparent Bias, Operational Analysis, and Therapeutic Window. Mol Pharmacol, 98 (4): 410-424. [PMID:32665252]
Kelly E. (2011) The subtleties of µ-opioid receptor phosphorylation. Br J Pharmacol, 164 (2): 294-7. [PMID:21449916]
Kieffer BL, Evans CJ. (2009) Opioid receptors: from binding sites to visible molecules in vivo. Neuropharmacology, 56 Suppl 1: 205-12. [PMID:18718480]
* Pradhan AA, Befort K, Nozaki C, Gavériaux-Ruff C, Kieffer BL. (2011) The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci, 32 (10): 581-90. [PMID:21925742]
Schröder W, Lambert DG, Ko MC, Koch T. (2014) Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol, 171 (16): 3777-800. [PMID:24762001]
Shippenberg TS. (2009) The dynorphin/kappa opioid receptor system: a new target for the treatment of addiction and affective disorders?. Neuropsychopharmacology, 34 (1): 247. [PMID:19079072]
* Valentino RJ, Volkow ND. (2020) Opioid Research: Past and Future. Mol Pharmacol, 98 (4): 389-391. [PMID:32660966]
* Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. (2013) Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev, 65 (1): 223-54. [PMID:23321159]
1. Adapa ID, Toll L. (1997) Relationship between binding affinity and functional activity of nociceptin/orphanin FQ. Neuropeptides, 31 (5): 403-8. [PMID:9413015]
2. Akiyama K, Gee KW, Mosberg HI, Hruby VJ, Yamamura HI. (1985) Characterization of [3H][2-D-penicillamine, 5-D-penicillamine]-enkephalin binding to delta opiate receptors in the rat brain and neuroblastoma--glioma hybrid cell line (NG 108-15). Proc Natl Acad Sci USA, 82 (8): 2543-7. [PMID:2986120]
3. Ann DK, Hasegawa J, Ko JL, Chen ST, Lee NM, Loh HH. (1992) Specific reduction of delta-opioid receptor binding in transfected NG108-15 cells. J Biol Chem, 267 (11): 7921-6. [PMID:1313812]
4. Arcuri L, Novello S, Frassineti M, Mercatelli D, Pisanò CA, Morella I, Fasano S, Journigan BV, Meyer ME, Polgar WE et al.. (2018) Anti-Parkinsonian and anti-dyskinetic profiles of two novel potent and selective nociceptin/orphanin FQ receptor agonists. Br J Pharmacol, 175 (5): 782-796. [PMID:29232769]
5. Bigoni R, Rizzi D, Rizzi A, Camarda V, Guerrini R, Lambert DG, Hashiba E, Berger H, Salvadori S, Regoli D et al.. (2002) Pharmacological characterisation of [(pX)Phe4]nociceptin(1-13)amide analogues. 1. In vitro studies. Naunyn Schmiedebergs Arch Pharmacol, 365 (6): 442-9. [PMID:12070757]
6. Bruchas MR, Yang T, Schreiber S, Defino M, Kwan SC, Li S, Chavkin C. (2007) Long-acting kappa opioid antagonists disrupt receptor signaling and produce noncompetitive effects by activating c-Jun N-terminal kinase. J Biol Chem, 282 (41): 29803-11. [PMID:17702750]
7. Burford NT, Clark MJ, Wehrman TS, Gerritz SW, Banks M, O'Connell J, Traynor JR, Alt A. (2013) Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc Natl Acad Sci USA, 110 (26): 10830-5. [PMID:23754417]
8. Burford NT, Livingston KE, Canals M, Ryan MR, Budenholzer LM, Han Y, Shang Y, Herbst JJ, O'Connell J, Banks M et al.. (2015) Discovery, Synthesis, and Molecular Pharmacology of Selective Positive Allosteric Modulators of the δ-Opioid Receptor. J Med Chem, 58 (10): 4220-9. [PMID:25901762]
9. Béguin C, Richards MR, Wang Y, Chen Y, Liu-Chen LY, Ma Z, Lee DY, Carlezon Jr WA, Cohen BM. (2005) Synthesis and in vitro pharmacological evaluation of salvinorin A analogues modified at C(2). Bioorg Med Chem Lett, 15 (11): 2761-5. [PMID:15869877]
10. Búzás B, Tóth G, Cavagnero S, Hruby VJ, Borsodi A. (1992) Synthesis and binding characteristics of the highly delta-specific new tritiated opioid peptide, [3H]deltorphin II. Life Sci, 50 (14): PL75-8. [PMID:1313131]
11. Calderon SN, Rothman RB, Porreca F, Flippen-Anderson JL, McNutt RW, Xu H, Smith LE, Bilsky EJ, Davis P, Rice KC. (1994) Probes for narcotic receptor mediated phenomena. 19. Synthesis of (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3- methoxybenzyl]-N,N-diethylbenzamide (SNC 80): a highly selective, nonpeptide delta opioid receptor agonist. J Med Chem, 37 (14): 2125-8. [PMID:8035418]
12. Calo G, Rizzi A, Rizzi D, Bigoni R, Guerrini R, Marzola G, Marti M, McDonald J, Morari M, Lambert DG et al.. (2002) [Nphe1,Arg14,Lys15]nociceptin-NH2, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol, 136 (2): 303-11. [PMID:12010780]
13. Camarda V, Fischetti C, Anzellotti N, Molinari P, Ambrosio C, Kostenis E, Regoli D, Trapella C, Guerrini R, Severo S et al.. (2009) Pharmacological profile of NOP receptors coupled with calcium signaling via the chimeric protein G alpha qi5. Naunyn Schmiedebergs Arch Pharmacol, 379 (6): 599-607. [PMID:19183962]
14. Chang KJ, Wei ET, Killian A, Chang JK. (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like activities. J Pharmacol Exp Ther, 227 (2): 403-8. [PMID:6313901]
15. Chavkin C, Sud S, Jin W, Stewart J, Zjawiony JK, Siebert DJ, Toth BA, Hufeisen SJ, Roth BL. (2004) Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations. J Pharmacol Exp Ther, 308 (3): 1197-203. [PMID:14718611]
16. Che T, English J, Krumm BE, Kim K, Pardon E, Olsen RHJ, Wang S, Zhang S, Diberto JF, Sciaky N et al.. (2020) Nanobody-enabled monitoring of kappa opioid receptor states. Nat Commun, 11 (1): 1145. [PMID:32123179]
17. Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE et al.. (2018) Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 172 (1-2): 55-67.e15. [PMID:29307491]
18. Chen Z, Davies E, Miller WS, Shan S, Valenzano KJ, Kyle DJ. (2004) Design and synthesis of 4-phenyl piperidine compounds targeting the mu receptor. Bioorg Med Chem Lett, 14 (21): 5275-9. [PMID:15454210]
19. Conibear AE, Asghar J, Hill R, Henderson G, Borbely E, Tekus V, Helyes Z, Palandri J, Bailey C, Starke I et al.. (2020) A Novel G Protein-Biased Agonist at the δ Opioid Receptor with Analgesic Efficacy in Models of Chronic Pain. J Pharmacol Exp Ther, 372 (2): 224-236. [PMID:31594792]
20. Cox BM, Christie MJ, Devi L, Toll L, Traynor JR. (2015) Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br J Pharmacol, 172 (2): 317-23. [PMID:24528283]
21. Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M. (1996) International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev, 48 (4): 567-92. [PMID:8981566]
22. Dietis N, McDonald J, Molinari S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. (2012) Pharmacological characterization of the bifunctional opioid ligand H-Dmt-Tic-Gly-NH-Bzl (UFP-505). Br J Anaesth, 108 (2): 262-70. [PMID:22194444]
23. Dietis N, Niwa H, Tose R, McDonald J, Ruggieri V, Filaferro M, Vitale G, Micheli L, Ghelardini C, Salvadori S et al.. (2018) In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505. Br J Pharmacol, 175 (14): 2881-2896. [PMID:29524334]
24. Dooley CT, Spaeth CG, Berzetei-Gurske IP, Craymer K, Adapa ID, Brandt SR, Houghten RA, Toll L. (1997) Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORL1. J Pharmacol Exp Ther, 283 (2): 735-41. [PMID:9353393]
25. Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G. (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci USA, 86 (13): 5188-92. [PMID:2544892]
26. Faouzi A, Wang H, Zaidi SA, DiBerto JF, Che T, Qu Q, Robertson MJ, Madasu MK, El Daibani A, Varga BR et al.. (2023) Structure-based design of bitopic ligands for the µ-opioid receptor. Nature, 613 (7945): 767-774. [PMID:36450356]
27. Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC. (2014) Molecular control of δ-opioid receptor signalling. Nature, 506 (7487): 191-6. [PMID:24413399]
28. Fenalti G, Zatsepin NA, Betti C, Giguere P, Han GW, Ishchenko A, Liu W, Guillemyn K, Zhang H, James D et al.. (2015) Structural basis for bifunctional peptide recognition at human δ-opioid receptor. Nat Struct Mol Biol, 22 (3): 265-8. [PMID:25686086]
29. Ferrari F, Rizzo S, Ruzza C, Calo G. (2020) Detailed In Vitro Pharmacological Characterization of the Clinically Viable Nociceptin/Orphanin FQ Peptide Receptor Antagonist BTRX-246040. J Pharmacol Exp Ther, 373 (1): 34-43. [PMID:31937563]
30. Fischetti C, Camarda V, Rizzi A, Pelà M, Trapella C, Guerrini R, McDonald J, Lambert DG, Salvadori S, Regoli D et al.. (2009) Pharmacological characterization of the nociceptin/orphanin FQ receptor non peptide antagonist Compound 24. Eur J Pharmacol, 614 (1-3): 50-7. [PMID:19445927]
31. Foord SM, Bonner TI, Neubig RR, Rosser EM, Pin JP, Davenport AP, Spedding M, Harmar AJ. (2005) International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol Rev, 57 (2): 279-88. [PMID:15914470]
32. Gillis A, Sreenivasan V, Christie MJ. (2020) Intrinsic Efficacy of Opioid Ligands and Its Importance for Apparent Bias, Operational Analysis, and Therapeutic Window. Mol Pharmacol, 98 (4): 410-424. [PMID:32665252]
33. Goldstein A, Naidu A. (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol, 36 (2): 265-72. [PMID:2549383]
34. Gomes I, Sierra S, Lueptow L, Gupta A, Gouty S, Margolis EB, Cox BM, Devi LA. (2020) Biased signaling by endogenous opioid peptides. Proc Natl Acad Sci U S A, 117 (21): 11820-11828. [PMID:32393639]
35. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature, 485 (7398): 400-4. [PMID:22596164]
36. Guerrini R, Calo G, Rizzi A, Bianchi C, Lazarus LH, Salvadori S, Temussi PA, Regoli D. (1997) Address and message sequences for the nociceptin receptor: a structure-activity study of nociceptin-(1-13)-peptide amide. J Med Chem, 40 (12): 1789-93. [PMID:9191955]
37. Gulya K, Pelton JT, Hruby VJ, Yamamura HI. (1986) Cyclic somatostatin octapeptide analogues with high affinity and selectivity toward mu opioid receptors. Life Sci, 38 (24): 2221-9. [PMID:2872570]
38. Handa BK, Land AC, Lord JA, Morgan BA, Rance MJ, Smith CF. (1981) Analogues of beta-LPH61-64 possessing selective agonist activity at mu-opiate receptors. Eur J Pharmacol, 70 (4): 531-40. [PMID:6263640]
39. Hanessian S, Parthasarathy S, Mauduit M, Payza K. (2003) The power of visual imagery in drug design. Isopavines as a new class of morphinomimetics and their human opioid receptor binding activity. J Med Chem, 46 (1): 34-48. [PMID:12502358]
40. Hayashi S, Hirao A, Imai A, Nakamura H, Murata Y, Ohashi K, Nakata E. (2009) Novel non-peptide nociceptin/orphanin FQ receptor agonist, 1-[1-(1-Methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: design, synthesis, and structure-activity relationship of oral receptor occupancy in the brain for orally potent antianxiety drug. J Med Chem, 52 (3): 610-25. [PMID:19125610]
41. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC et al.. (2015) Structural insights into µ-opioid receptor activation. Nature, 524 (7565): 315-21. [PMID:26245379]
42. Hunter JC, Leighton GE, Meecham KG, Boyle SJ, Horwell DC, Rees DC, Hughes J. (1990) CI-977, a novel and selective agonist for the kappa-opioid receptor. Br J Pharmacol, 101 (1): 183-9. [PMID:2178014]
43. Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, Lundstrom K, Cesura AM, Poli SM, Roever S et al.. (2000) A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci USA, 97 (9): 4938-43. [PMID:10758169]
44. Jones RM, Portoghese PS. (2000) 5'-Guanidinonaltrindole, a highly selective and potent kappa-opioid receptor antagonist. Eur J Pharmacol, 396 (1): 49-52. [PMID:10822054]
45. Jordan BA, Devi LA. (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature, 399 (6737): 697-700. [PMID:10385123]
46. Kathmann M, Flau K, Redmer A, Tränkle C, Schlicker E. (2006) Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn Schmiedebergs Arch Pharmacol, 372 (5): 354-61. [PMID:16489449]
47. Kawamoto H, Ozaki S, Itoh Y, Miyaji M, Arai S, Nakashima H, Kato T, Ohta H, Iwasawa Y. (1999) Discovery of the first potent and selective small molecule opioid receptor-like (ORL1) antagonist: 1-[(3R,4R)-1-cyclooctylmethyl-3- hydroxymethyl-4-piperidyl]-3-ethyl-1, 3-dihydro-2H-benzimidazol-2-one (J-113397). J Med Chem, 42 (25): 5061-3. [PMID:10602690]
48. Kelly E, Conibear A, Henderson G. (2023) Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol, 63: 491-515. [PMID:36170657]
49. Kelly E, Mundell SJ, Sava A, Roth AL, Felici A, Maltby K, Nathan PJ, Bullmore ET, Henderson G. (2015) The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours. Psychopharmacology (Berl.), 232 (1): 305-14. [PMID:24973897]
50. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L. (2011) The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-methoxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther, 336 (3): 952-61. [PMID:21177476]
51. Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, Latorraca NR, Hilger D, Dawson R, Matile H et al.. (2018) Structure of the µ-opioid receptor-Gi protein complex. Nature, 558 (7711): 547-552. [PMID:29899455]
52. Kuszak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK. (2009) Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem, 284 (39): 26732-41. [PMID:19542234]
53. Lahti RA, Mickelson MM, McCall JM, Von Voigtlander PF. (1985) [3H]U-69593 a highly selective ligand for the opioid kappa receptor. Eur J Pharmacol, 109 (2): 281-4. [PMID:2986999]
54. Le Bourdonnec B, Barker WM, Belanger S, Wiant DD, Conway-James NC, Cassel JA, O'Neill TJ, Little PJ, DeHaven RN, DeHaven-Hudkins DL et al.. (2008) Novel trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines as mu opioid receptor antagonists with improved opioid receptor selectivity profiles. Bioorg Med Chem Lett, 18 (6): 2006-12. [PMID:18313920]
55. Le Bourdonnec B, Windh RT, Ajello CW, Leister LK, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M, Wiant DD et al.. (2008) Potent, orally bioavailable delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5859). J Med Chem, 51 (19): 5893-6. [PMID:18788723]
56. Le Bourdonnec B, Windh RT, Leister LK, Zhou QJ, Ajello CW, Gu M, Chu GH, Tuthill PA, Barker WM, Koblish M et al.. (2009) Spirocyclic delta opioid receptor agonists for the treatment of pain: discovery of N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5747). J Med Chem, 52 (18): 5685-702. [PMID:19694468]
57. Lever JR, Scheffel U. (1998) Selective in vivo binding of [3H]naltriben to delta-opioid receptors in mouse brain. Eur J Pharmacol, 350 (2-3): 335-44. [PMID:9696425]
58. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, Schröder W, Kögel BY, Beier H, Englberger W et al.. (2014) Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther, 349 (3): 535-48. [PMID:24713140]
59. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. (2012) Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature, 485 (7398): 321-6. [PMID:22437502]
60. McDonald J, Barnes TA, Okawa H, Williams J, Calo' G, Rowbotham DJ, Lambert DG. (2003) Partial agonist behaviour depends upon the level of nociceptin/orphanin FQ receptor expression: studies using the ecdysone-inducible mammalian expression system. Br J Pharmacol, 140 (1): 61-70. [PMID:12967935]
61. Miller RL, Thompson AA, Trapella C, Guerrini R, Malfacini D, Patel N, Han GW, Cherezov V, Caló G, Katritch V et al.. (2015) The Importance of Ligand-Receptor Conformational Pairs in Stabilization: Spotlight on the N/OFQ G Protein-Coupled Receptor. Structure, 23 (12): 2291-2299. [PMID:26526853]
62. Mollereau C, Moisand C, Butour JL, Parmentier M, Meunier JC. (1996) Replacement of Gln280 by His in TM6 of the human ORL1 receptor increases affinity but reduces intrinsic activity of opioids. FEBS Lett, 395 (1): 17-21. [PMID:8849681]
63. Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC. (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett, 341 (1): 33-8. [PMID:8137918]
64. Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF. (1983) Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci USA, 80 (19): 5871-4. [PMID:6310598]
65. Munro TA, Huang XP, Inglese C, Perrone MG, Van't Veer A, Carroll FI, Béguin C, Carlezon Jr WA, Colabufo NA, Cohen BM et al.. (2013) Selective κ opioid antagonists nor-BNI, GNTI and JDTic have low affinities for non-opioid receptors and transporters. PLoS ONE, 8 (8): e70701. [PMID:23976952]
66. Neumeyer JL, Zhang A, Xiong W, Gu XH, Hilbert JE, Knapp BI, Negus SS, Mello NK, Bidlack JM. (2003) Design and synthesis of novel dimeric morphinan ligands for kappa and micro opioid receptors. J Med Chem, 46 (24): 5162-70. [PMID:14613319]
67. Oertel BG, Kettner M, Scholich K, Renné C, Roskam B, Geisslinger G, Schmidt PH, Lötsch J. (2009) A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J Biol Chem, 284 (10): 6530-5. [PMID:19116204]
68. Okawa H, Nicol B, Bigoni R, Hirst RA, Calo G, Guerrini R, Rowbotham DJ, Smart D, McKnight AT, Lambert DG. (1999) Comparison of the effects of [Phe1psi(CH2-NH)Gly2]nociceptin(1-13)NH2 in rat brain, rat vas deferens and CHO cells expressing recombinant human nociceptin receptors. Br J Pharmacol, 127 (1): 123-30. [PMID:10369464]
69. Pasternak GW, Pan YX. (2013) Mu opioids and their receptors: evolution of a concept. Pharmacol Rev, 65 (4): 1257-317. [PMID:24076545]
70. Payza K. (2003) Binding and activity of opioid ligands at the cloned human delta, mu and kappa receptors. In The Delta Receptor Edited by Chang KJ (CRC Press) 261-275. [ISBN:0824740319]
71. Portoghese PS, Larson DL, Ronsisvalle G, Schiller PW, Nguyen TM, Lemieux C, Takemori AE. (1987) Hybrid bivalent ligands with opiate and enkephalin pharmacophores. J Med Chem, 30 (11): 1991-4. [PMID:2444704]
72. Portoghese PS, Sultana M, Takemori AE. (1988) Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur J Pharmacol, 146 (1): 185-6. [PMID:2832195]
73. Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier MC, Déprez B. (2001) From hit to lead. Combining two complementary methods for focused library design. Application to mu opiate ligands. J Med Chem, 44 (21): 3378-90. [PMID:11585443]
74. Qu Q, Huang W, Aydin D, Paggi JM, Seven AB, Wang H, Chakraborty S, Che T, DiBerto JF, Robertson MJ et al.. (2023) Insights into distinct signaling profiles of the µOR activated by diverse agonists. Nat Chem Biol, 19 (4): 423-430. [PMID:36411392]
75. Quock RM, Hosohata Y, Knapp RJ, Burkey TH, Hosohata K, Zhang X, Rice KC, Nagase H, Hruby VJ, Porreca F et al.. (1997) Relative efficacies of delta-opioid receptor agonists at the cloned human delta-opioid receptor. Eur J Pharmacol, 326 (1): 101-4. [PMID:9178661]
76. Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T. (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol, 45 (2): 330-4. [PMID:8114680]
77. Rizzi A, Spagnolo B, Wainford RD, Fischetti C, Guerrini R, Marzola G, Baldisserotto A, Salvadori S, Regoli D, Kapusta DR et al.. (2007) In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides, 28 (6): 1240-51. [PMID:17532097]
78. Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, Skiniotis G. (2022) Structure determination of inactive-state GPCRs with a universal nanobody. Nat Struct Mol Biol, 29 (12): 1188-1195. [PMID:36396979]
79. Roth BL, Baner K, Westkaemper R, Siebert D, Rice KC, Steinberg S, Ernsberger P, Rothman RB. (2002) Salvinorin A: a potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc Natl Acad Sci USA, 99 (18): 11934-9. [PMID:12192085]
80. Schiller PW, Weltrowska G, Nguyen TM, Wilkes BC, Chung NN, Lemieux C. (1993) TIPP[psi]: a highly potent and stable pseudopeptide delta opioid receptor antagonist with extraordinary delta selectivity. J Med Chem, 36 (21): 3182-7. [PMID:8230106]
81. Schteingart CD, Menzaghi F, Jiang G, Alexander RV, Sueiras-Diaz J, Spencer RH, Chalmers DT, Luo Z. (2008) Synthetic peptide amides. Patent number: US7402564 B1. Assignee: Cara Therapeutics, Inc.. Priority date: 10/11/2006. Publication date: 22/07/2008.
82. Simonin F, Gavériaux-Ruff C, Befort K, Matthes H, Lannes B, Micheletti G, Mattéi MG, Charron G, Bloch B, Kieffer B. (1995) kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc Natl Acad Sci USA, 92 (15): 7006-10. [PMID:7624359]
83. Simonin F, Slowe S, Becker JA, Matthes HW, Filliol D, Chluba J, Kitchen I, Kieffer BL. (2001) Analysis of [3H]bremazocine binding in single and combinatorial opioid receptor knockout mice. Eur J Pharmacol, 414 (2-3): 189-95. [PMID:11239918]
84. Sofuoglu M, Portoghese PS, Takemori AE. (1991) Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther, 257 (2): 676-80. [PMID:1851833]
85. Spagnolo B, Carrà G, Fantin M, Fischetti C, Hebbes C, McDonald J, Barnes TA, Rizzi A, Trapella C, Fanton G et al.. (2007) Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB-612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vitro studies. J Pharmacol Exp Ther, 321 (3): 961-7. [PMID:17329552]
86. Stefano GB, Melchiorri P, Negri L, Hughes TK, Scharrer B. (1992) [D-Ala2]deltorphin I binding and pharmacological evidence for a special subtype of delta opioid receptor on human and invertebrate immune cells. Proc Natl Acad Sci USA, 89 (19): 9316-20. [PMID:1329092]
87. Stevens WC, Jones RM, Subramanian G, Metzger TG, Ferguson DM, Portoghese PS. (2000) Potent and selective indolomorphinan antagonists of the kappa-opioid receptor. J Med Chem, 43 (14): 2759-69. [PMID:10893314]
88. Thomas JB, Atkinson RN, Rothman RB, Fix SE, Mascarella SW, Vinson NA, Xu H, Dersch CM, Lu Y, Cantrell BE et al.. (2001) Identification of the first trans-(3R,4R)- dimethyl-4-(3-hydroxyphenyl)piperidine derivative to possess highly potent and selective opioid kappa receptor antagonist activity. J Med Chem, 44 (17): 2687-90. [PMID:11495579]
89. Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G et al.. (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature, 485 (7398): 395-9. [PMID:22596163]
90. Toledo MA, Pedregal C, Lafuente C, Diaz N, Martinez-Grau MA, Jiménez A, Benito A, Torrado A, Mateos C, Joshi EM et al.. (2014) Discovery of a novel series of orally active nociceptin/orphanin FQ (NOP) receptor antagonists based on a dihydrospiro(piperidine-4,7'-thieno[2,3-c]pyran) scaffold. J Med Chem, 57 (8): 3418-29. [PMID:24678969]
91. Toll L. (1990) Mu-opioid receptor binding in intact SH-SY5Y neuroblastoma cells. Eur J Pharmacol, 176 (2): 213-7. [PMID:1968847]
92. Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A et al.. (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res Monogr, 178: 440-66. [PMID:9686407]
93. Tzschentke TM, Christoph T, Kögel B, Schiene K, Hennies HH, Englberger W, Haurand M, Jahnel U, Cremers TI, Friderichs E et al.. (2007) (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther, 323 (1): 265-76. [PMID:17656655]
94. Varty GB, Lu SX, Morgan CA, Cohen-Williams ME, Hodgson RA, Smith-Torhan A, Zhang H, Fawzi AB, Graziano MP, Ho GD et al.. (2008) The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J Pharmacol Exp Ther, 326 (2): 672-82. [PMID:18492950]
95. Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J, Trapella C, Lazarus LH, Regoli D, Guerrini R et al.. (2008) Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides, 29 (1): 93-103. [PMID:18069089]
96. Volpe DA, McMahon Tobin GA, Mellon RD, Katki AG, Parker RJ, Colatsky T, Kropp TJ, Verbois SL. (2011) Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol, 59 (3): 385-90. [PMID:21215785]
97. Vonvoigtlander PF, Lahti RA, Ludens JH. (1983) U-50,488: a selective and structurally novel non-Mu (kappa) opioid agonist. J Pharmacol Exp Ther, 224 (1): 7-12. [PMID:6129321]
98. Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J, Kaindl J, Hübner H, Skiniotis G, Kobilka BK, Gmeiner P. (2022) Structure-Based Evolution of G Protein-Biased μ-Opioid Receptor Agonists. Angew Chem Int Ed Engl, 61 (26): e202200269. [PMID:35385593]
99. Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y et al.. (2023) Structures of the entire human opioid receptor family. Cell, 186 (2): 413-427.e17. [PMID:36638794]
100. Wentland MP, Lou R, Lu Q, Bu Y, Denhardt C, Jin J, Ganorkar R, VanAlstine MA, Guo C, Cohen DJ et al.. (2009) Syntheses of novel high affinity ligands for opioid receptors. Bioorg Med Chem Lett, 19 (8): 2289-94. [PMID:19282177]
101. Wichmann J, Adam G, Röver S, Hennig M, Scalone M, Cesura AM, Dautzenberg FM, Jenck F. (2000) Synthesis of (1S,3aS)-8-(2,3,3a,4,5, 6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4. 5]decan-4-one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic-like properties. Eur J Med Chem, 35 (9): 839-51. [PMID:11006485]
102. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI et al.. (2012) Structure of the human κ-opioid receptor in complex with JDTic. Nature, 485 (7398): 327-32. [PMID:22437504]
103. Yamamura MS, Horvath R, Toth G, Otvos F, Malatynska E, Knapp RJ, Porreca F, Hruby VJ, Yamamura HI. (1992) Characterization of [3H]naltrindole binding to delta opioid receptors in rat brain. Life Sci, 50 (16): PL119-24. [PMID:1313133]
104. Zagon IS, Verderame MF, McLaughlin PJ. (2002) The biology of the opioid growth factor receptor (OGFr). Brain Res Brain Res Rev, 38 (3): 351-76. [PMID:11890982]
105. Zaratin PF, Petrone G, Sbacchi M, Garnier M, Fossati C, Petrillo P, Ronzoni S, Giardina GA, Scheideler MA. (2004) Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). J Pharmacol Exp Ther, 308 (2): 454-61. [PMID:14593080]
106. Zaveri N. (2003) Peptide and nonpeptide ligands for the nociceptin/orphanin FQ receptor ORL1: research tools and potential therapeutic agents. Life Sci, 73: 663-678. [PMID:12801588]
107. Zaveri NT, Journigan VB, Polgar WE. (2015) Discovery of the first small-molecule opioid pan antagonist with nanomolar affinity at mu, delta, kappa, and nociceptin opioid receptors. ACS Chem Neurosci, 6 (4): 646-57. [PMID:25635572]
108. Zhu J, Chen C, Xue JC, Kunapuli S, DeRiel JK, Liu-Chen LY. (1995) Cloning of a human kappa opioid receptor from the brain. Life Sci, 56: PL201-PL207. [PMID:7869844]
109. Zhu J, Luo LY, Li JG, Chen C, Liu-Chen LY. (1997) Activation of the cloned human kappa opioid receptor by agonists enhances [35S]GTPgammaS binding to membranes: determination of potencies and efficacies of ligands. J Pharmacol Exp Ther, 282 (2): 676-84. [PMID:9262330]
110. Zhuang Y, Wang Y, He B, He X, Zhou XE, Guo S, Rao Q, Yang J, Liu J, Zhou Q et al.. (2022) Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell, 185 (23): 4361-4375.e19. [PMID:36368306]
Subcommittee members:
Lawrence Toll (Chairperson)
Michael Bruchas
Girolamo Caló
MacDonald J. Christie
Lakshmi A. Devi
Christopher Evans
Stephen Husbands
Eamonn Kelly, Prof
Mary-Jeanne Kreek
Lee-Yuan Liu-Chen
Dominique Massot
Philip S. Portoghese
Stefan Schulz
John R. Traynor
Hiroshi Ueda
Yung H. Wong
Nurulain Zaveri
Andreas Zimmer |
Other contributors:
Anna Borsodi
Charles Chavkin
Olivier Civelli
Mark Connor
Brian M. Cox (Past chairperson)
Graeme Henderson
Volker Höllt
Brigitte Kieffer
Ian Kitchen
Davide Malfacini
Jean-Claude Meunier
Toni S. Shippenberg
Eric J. Simon |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Three genes for naloxone-sensitive opioid receptors have been identified in humans, and while the μ receptor in particular may be subject to extensive alternative splicing [69], these putative isoforms have not been correlated with any of the subtypes of receptor proposed in years past. Opioid receptors may heterodimerize with each other or with other 7TM receptors [45], and give rise to complexes with a unique pharmacology, however, evidence for such heterodimers in native cells is equivocal and the consequences of this heterodimerization for signalling remains largely unknown. For μ-opioid receptors at least, dimerization does not seem to be required for signalling [52]. A distinct met-enkephalin receptor lacking structural resemblance to the opioid receptors listed has been identified (OGFR, 9NZT2) and termed an opioid growth factor receptor [104].
endomorphin-1 and endomorphin-2 have been identified as highly selective, putative endogenous agonists for the μ-opioid receptor. At present, however, the mechanisms for endomorphin synthesis in vivo have not been established, and there is no gene identified that encodes for either. Thus, the status of these peptides as endogenous ligands remains unproven.
Two areas of increasing importance in defining opioid receptor function are the presence of functionally relevant single nucleotide polymorphisms in human μ-receptors [67] and the identification of biased signalling by opioid receptor ligands, both agonists and antagonists [6,48]. Despite the identification of biased ligands for the μ receptor, the relevance with respect to physiological and behavioral actions in vivo is not clear [32]. Pathway bias for agonists makes general rank orders of potency and efficacy somewhat obsolete, so these do not appear in the table. As ever, the mechanisms underlying the acute and long term regulation of opiod receptor function are the subject of intense investigation and debate.
The richness of opioid receptor pharmacology has been enhanced with the recent discovery of allosteric modulators of μ and δ receptors, notably the positive allosteric modulators and silent allosteric "antagonists" outlined in [7-8]. Negative allosteric modulation of opioid receptors has been previously suggested [46], whether all compounds are acting at a similar site remains to be established.
In the last decade, several opioid receptors structures have been solved in their inactive and active forms: δ receptor [27-28,35,99]; κ receptor [16-17,99,102]; μ receptor [26,41,51,59,74,78,98-99,110]; NOP [61,89,99]. This effort is of great importance for novel structure-based drug design studies.