Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Gene and Protein Information ![]() |
||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 423 | 11q21 | GPR83 | G protein-coupled receptor 83 | 3,15 |
Mouse | 7 | 423 | 9 4.4 cM | Gpr83 | G protein-coupled receptor 83 | 3,10 |
Rat | 7 | 422 | 8q11 | Gpr83 | G protein-coupled receptor 83 | 21 |
Previous and Unofficial Names ![]() |
|
GIR | GPR72 | glucocorticoid induced receptor | G protein-coupled receptor 72 | JP05 [2] |
Database Links ![]() |
|
Specialist databases | |
GPCRdb | gpr83_human (Hs), gpr83_mouse (Mm) |
Other databases | |
Alphafold | Q9NYM4 (Hs), P30731 (Mm) |
ChEMBL Target | CHEMBL4523924 (Hs) |
Ensembl Gene | ENSG00000123901 (Hs), ENSMUSG00000031932 (Mm), ENSRNOG00000030318 (Rn) |
Entrez Gene | 10888 (Hs), 14608 (Mm), 140595 (Rn) |
Human Protein Atlas | ENSG00000123901 (Hs) |
KEGG Gene | hsa:10888 (Hs), mmu:14608 (Mm), rno:140595 (Rn) |
OMIM | 605569 (Hs) |
Pharos | Q9NYM4 (Hs) |
RefSeq Nucleotide | NM_016540 (Hs), NM_010287 (Mm), NM_080411 (Rn) |
RefSeq Protein | NP_057624 (Hs), NP_034417 (Mm) |
UniProtKB | Q9NYM4 (Hs), P30731 (Mm) |
Wikipedia | GPR83 (Hs) |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
It is reported that rat GPR83 can bind to neuropeptide Y fragments [17]. |
Tissue Distribution ![]() |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
Tissue Distribution Comments | ||||||||
A notable difference in GPR83 expression is observed in mouse and rat, especially the differential distribution of GPR83 in striatum and cortex [21]. GPR83 mRNA levels are upregulated persistently in rat prefrontal cortex following chronic amphetamine asministration, suggesting a role for GPR83 in dopaminergic neuroadaptation [21]. Significant decrease of GPR83 expression is found in striatum, nucleus accumbens, olfactory tubercle, CA2 sub-region of the hippocampus and hypothalamic nuclei following acute dexamethasone treatment [1]. GPR83 is upregulated in AGS cells by Helicobacter pylori adhesion [12]. Upon n-3 PUFA-depletion in rat, the expression of GPR83 mRNA in olfactory bulb decreased significantly, whereas no change in GPR83 expression was observed in neocortex and piriform cortex [11]. Rats that were not deprived of n-3 PUFA showed a significant increase in GPR83 mRNA expression in neocortex and olfactory bulb [11]. |
Expression Datasets ![]() |
|
|
Physiological Functions Comments | |
A study by Hansen et al. showed that GPR83 overexpression in naïve Foxp3- regulatory T cells led to the induction of Foxp3+ cells during inflammatory conditions in vivo [8]. However, two studies demonstrated that GPR83 is dispensable for regulatory T cell development and function [13,20]. Hansen et al. later reported that mouse GPR83 isoform-4 is involved in the induction of regulatory T cells during inflammation [9]. |
Physiological Consequences of Altering Gene Expression ![]() |
||||||||||
|
||||||||||
|
||||||||||
Physiological Consequences of Altering Gene Expression Comments | ||||||||||
It is reported that mice deficient in GPR83 expression were normal and did not have signs of inflammatory disease [20]. |
Phenotypes, Alleles and Disease Models ![]() |
Mouse data from MGI | ||||||||||||||||||||||||
|
Biologically Significant Variants ![]() |
||||||||||||||||
|
General Comments |
Four different GPR83 isoforms have been described in mice but only isoform-1 has been described in humans [4]. |
1. Adams F, Grassie M, Shahid M, Hill DR, Henry B. (2003) Acute oral dexamethasone administration reduces levels of orphan GPCR glucocorticoid-induced receptor (GIR) mRNA in rodent brain: potential role in HPA-axis function. Brain Res Mol Brain Res, 117 (1): 39-46. [PMID:14499479]
2. Brézillon S, Detheux M, Parmentier M, Hökfelt T, Hurd YL. (2001) Distribution of an orphan G-protein coupled receptor (JP05) mRNA in the human brain. Brain Res, 921 (1-2): 21-30. [PMID:11720708]
3. De Moerlooze L, Williamson J, Liners F, Perret J, Parmentier M. (2000) Cloning and chromosomal mapping of the mouse and human genes encoding the orphan glucocorticoid-induced receptor (GPR83). Cytogenet Cell Genet, 90 (1-2): 146-50. [PMID:11060465]
4. Dubins JS, Sanchez-Alavez M, Zhukov V, Sanchez-Gonzalez A, Moroncini G, Carvajal-Gonzalez S, Hadcock JR, Bartfai T, Conti B. (2012) Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin. Metab Clin Exp, 61 (10): 1486-93. [PMID:22560055]
5. Eberwine J, Bartfai T. (2011) Single cell transcriptomics of hypothalamic warm sensitive neurons that control core body temperature and fever response Signaling asymmetry and an extension of chemical neuroanatomy. Pharmacol Ther, 129 (3): 241-59. [PMID:20970451]
6. Fleissner D, Frede A, Knott M, Knuschke T, Geffers R, Hansen W, Dobos G, Langhorst J, Buer J, Westendorf AM. (2011) Generation and function of immunosuppressive human and murine CD8+ T cells by transforming growth factor-β and retinoic acid. Immunology, 134 (1): 82-92. [PMID:21711349]
7. Gomes I, Bobeck EN, Margolis EB, Gupta A, Sierra S, Fakira AK, Fujita W, Müller TD, Müller A, Tschöp MH et al.. (2016) Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Sci Signal, 9 (425): ra43. [PMID:27117253]
8. Hansen W, Loser K, Westendorf AM, Bruder D, Pfoertner S, Siewert C, Huehn J, Beissert S, Buer J. (2006) G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol, 177 (1): 209-15. [PMID:16785516]
9. Hansen W, Westendorf AM, Toepfer T, Mauel S, Geffers R, Gruber AD, Buer J. (2010) Inflammation in vivo is modulated by GPR83 isoform-4 but not GPR83 isoform-1 expression in regulatory T cells. Genes Immun, 11 (4): 357-61. [PMID:20200545]
10. Harrigan MT, Campbell NF, Bourgeois S. (1991) Identification of a gene induced by glucocorticoids in murine T-cells: a potential G protein-coupled receptor. Mol Endocrinol, 5 (9): 1331-8. [PMID:1663214]
11. Hichami A, Datiche F, Ullah S, Liénard F, Chardigny JM, Cattarelli M, Khan NA. (2007) Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats. Behav Brain Res, 184 (1): 1-10. [PMID:17686536]
12. Kim N, Park WY, Kim JM, Park YS, Lee DH, Park JH, Kim JS, Jung HC, Song IS. (2007) Analysis of Gene Expression Profile of AGS Cells Stimulated by Helicobacter pylori Adhesion. Gut Liver, 1 (1): 40-8. [PMID:20485657]
13. Lu LF, Gavin MA, Rasmussen JP, Rudensky AY. (2007) G protein-coupled receptor 83 is dispensable for the development and function of regulatory T cells. Mol Cell Biol, 27 (23): 8065-72. [PMID:17893329]
14. Müller A, Kleinau G, Piechowski CL, Müller TD, Finan B, Pratzka J, Grüters A, Krude H, Tschöp M, Biebermann H. (2013) G-protein coupled receptor 83 (GPR83) signaling determined by constitutive and zinc(II)-induced activity. PLoS ONE, 8 (1): e53347. [PMID:23335960]
15. Parker R, Liu M, Eyre HJ, Copeland NG, Gilbert DJ, Crawford J, Sutherland GR, Jenkins NA, Herzog H. (2000) Y-receptor-like genes GPR72 and GPR73: molecular cloning, genomic organisation and assignment to human chromosome 11q21.1 and 2p14 and mouse chromosome 9 and 6. Biochim Biophys Acta, 1491 (1-3): 369-75. [PMID:10760605]
16. Pesini P, Detheux M, Parmentier M, Hökfelt T. (1998) Distribution of a glucocorticoid-induced orphan receptor (JP05) mRNA in the central nervous system of the mouse. Brain Res Mol Brain Res, 57 (2): 281-300. [PMID:9675427]
17. Sah R, Parker SL, Sheriff S, Eaton K, Balasubramaniam A, Sallee FR. (2007) Interaction of NPY compounds with the rat glucocorticoid-induced receptor (GIR) reveals similarity to the NPY-Y2 receptor. Peptides, 28 (2): 302-9. [PMID:17240481]
18. Sah R, Pritchard LM, Richtand NM, Ahlbrand R, Eaton K, Sallee FR, Herman JP. (2005) Expression of the glucocorticoid-induced receptor mRNA in rat brain. Neuroscience, 133 (1): 281-92. [PMID:15893650]
19. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S. (2006) Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol, 18 (8): 1197-209. [PMID:16772372]
20. Toms C, Jessup H, Thompson C, Baban D, Davies K, Powrie F. (2008) Gpr83 expression is not required for the maintenance of intestinal immune homeostasis and regulation of T-cell-dependent colitis. Immunology, 125 (3): 302-12. [PMID:18479351]
21. Wang D, Herman JP, Pritchard LM, Spitzer RH, Ahlbrand RL, Kramer GL, Petty F, Sallee FR, Richtand NM. (2001) Cloning, expression, and regulation of a glucocorticoid-induced receptor in rat brain: effect of repetitive amphetamine. J Neurosci, 21 (22): 9027-35. [PMID:11698613]