Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Nicotinic acetylcholine (ACh) receptors are members of the Cys-loop family of transmitter-gated ion channels that includes the GABAA, strychnine-sensitive glycine and 5-HT3 receptors [2,34,40,42,48]. All nicotinic receptors are pentamers in which each of the five subunits contains 4 TM domains. Genes encoding a total of 17 subunits (α1-10, β1-4, γ, δ and ε) have been identified [28]. All subunits with the exception of α8 (present in avian species) have been identified in mammals. All α subunits possess two tandem cysteine residues near to the site involved in acetylcholine binding, and subunits not named α lack these residues [34]. The orthosteric ligand binding site is formed by residues within at least three peptide domains on the α subunit (principal component), and three on the adjacent subunit (complementary component). Nicotinic ACh receptors contain several allosteric modulatory sites. One such site, for positive allosteric modulators (PAMs) and allosteric agonists, has been proposed to reside within an intrasubunit cavity between the 4 TM domains [18,50]; see also [23]). The high resolution crystal structure of the molluscan ACh binding protein, a structural homologue of the extracellular binding domain of a nicotinic receptor pentamer, in complex with several nicotinic receptor ligands (e.g.[9]) and the crystal structure of the extracellular domain of the α1 subunit bound to α-bungarotoxin at 1.94Â resolution [15], has revealed the orthosteric binding site in detail (reviewed in [10,28,39-40]). Nicotinic receptors at the somatic neuromuscular junction of adult animals have the stoichiometry (α1)2β1δε, whereas an extrajunctional (α1)2β1γδ receptor predominates in embryonic and denervated skeletal muscle and other pathological states. Other nicotinic receptors are assembled as combinations of α(2-6) and β(2-4) subunits. For α2, α3, α4 and β2 and β4 subunits, pairwise combinations of α and β (e.g. α3β4 and α4β2) are sufficient to form a functional receptor in vitro, but far more complex isoforms may exist in vivo (reviewed in [20-21,34]). There is strong evidence that the pairwise assembly of some α and β subunits can occur with variable stoichiometry [e.g. (α4)2(β2)2 or (α4)3(β2)2] which influences the biophysical and pharmacological properties of the receptor [34]. α5 and β3 subunits lack function when expressed alone, or pairwise, but participate in the formation of functional hetero-oligomeric receptors when expressed as a third subunit with another α and β pair [e.g. α4α5αβ2, α4αβ2β3, α5α6β2, see [34] for further examples]. The α6 subunit can form a functional receptor when co-expressed with β4 in vitro, but more efficient expression ensues from incorporation of a third partner, such as β3 [49]. The α7, α8, and α9 subunits form functional homo-oligomers, but can also combine with a second subunit to constitute a hetero-oligomeric assembly (e.g. α7β2 and α9α10). For functional expression of the α10 subunit, co-assembly with α9 is necessary. The latter, along with the α10 subunit, appears to be largely confined to cochlear and vestibular hair cells. Comprehensive listings of nicotinic receptor subunit combinations identified from recombinant expression systems, or in vivo, are given in [34]. In addition, numerous proteins interact with nicotinic ACh receptors modifying their assembly, trafficking to and from the cell surface, and activation by ACh (reviewed by [4,27,33]).
The nicotinic receptor Subcommittee of NC-IUPHAR has recommended a nomenclature and classification scheme for nicotinic acetylcholine (nACh) receptors based on the subunit composition of known, naturally- and/or heterologously-expressed nACh receptor subtypes [30]. Headings for this table reflect abbreviations designating nACh receptor subtypes based on the predominant α subunit contained in that receptor subtype. An asterisk following the indicated α subunit denotes that other subunits are known to, or may, assemble with the indicated α subunit to form the designated nACh receptor subtype(s). Where subunit stoichiometries within a specific nACh receptor subtype are known, numbers of a particular subunit larger than 1 are indicated by a subscript following the subunit (enclosed in parentheses- see also [14]).
nicotinic acetylcholine receptor α1 subunit* C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α2 subunit* C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α3 subunit* C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α4 subunit* C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α5 subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α6 subunit* C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α7 subunit* C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α8 subunit (avian)* C Show summary »« Hide summary
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α9 subunit* C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor α10 subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor β1 subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor β2 subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor β3 subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor β4 subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor γ subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor δ subunit C Show summary »« Hide summary More detailed page
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
nicotinic acetylcholine receptor ε subunit C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev, 89 (1): 73-120. [PMID:19126755]
Araud T, Wonnacott S, Bertrand D. (2010) Associated proteins: The universal toolbox controlling ligand gated ion channel function. Biochem Pharmacol, 80 (2): 160-9. [PMID:20346921]
Arias HR. (2010) Positive and negative modulation of nicotinic receptors. Adv Protein Chem Struct Biol, 80: 153-203. [PMID:21109220]
Arneric SP, Holladay M, Williams M. (2007) Neuronal nicotinic receptors: a perspective on two decades of drug discovery research. Biochem Pharmacol, 74 (8): 1092-101. [PMID:17662959]
* Auerbach A. (2015) Agonist activation of a nicotinic acetylcholine receptor. Neuropharmacology, 96 (Pt B): 150-6. [PMID:25446670]
Balfour DJ. (2009) The neuronal pathways mediating the behavioral and addictive properties of nicotine. Handb Exp Pharmacol, (192): 209-33. [PMID:19184651]
Benowitz NL. (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol, 49: 57-71. [PMID:18834313]
* Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D. (2015) Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev, 67 (4): 1025-73. [PMID:26419447]
* Bouzat C, Sine SM. (2018) Nicotinic acetylcholine receptors at the single-channel level. Br J Pharmacol, 175 (11): 1789-1804. [PMID:28261794]
Champtiaux N, Changeux JP. (2004) Knockout and knockin mice to investigate the role of nicotinic receptors in the central nervous system. Prog Brain Res, 145: 235-51. [PMID:14650919]
Changeux JP, Taly A. (2008) Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med, 14 (3): 93-102. [PMID:18262468]
* Chatzidaki A, Millar NS. (2015) Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol, 97 (4): 408-417. [PMID:26231943]
Collingridge GL, Olsen RW, Peters J, Spedding M. (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology, 56 (1): 2-5. [PMID:18655795]
* Corradi J, Bouzat C. (2016) Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol, 90 (3): 288-99. [PMID:27190210]
* Crespi A, Colombo SF, Gotti C. (2018) Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. Br J Pharmacol, 175 (11): 1869-1879. [PMID:28294298]
D'hoedt D, Bertrand D. (2009) Nicotinic acetylcholine receptors: an overview on drug discovery. Expert Opin Ther Targets, 13 (4): 395-411. [PMID:19335063]
Dajas-Bailador F, Wonnacott S. (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci, 25 (6): 317-24. [PMID:15165747]
* Dineley KT, Pandya AA, Yakel JL. (2015) Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci, 36 (2): 96-108. [PMID:25639674]
Faghih R, Gopalakrishnan M, Briggs CA. (2008) Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. J Med Chem, 51 (4): 701-12. [PMID:18198823]
Fucile S. (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium, 35 (1): 1-8. [PMID:14670366]
Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P, Pucci L, Zoli M. (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol, 78 (7): 703-11. [PMID:19481063]
Gotti C, Zoli M, Clementi F. (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci, 27 (9): 482-91. [PMID:16876883]
Hogg RC, Bertrand D. (2004) Nicotinic acetylcholine receptors as drug targets. Curr Drug Targets CNS Neurol Disord, 3 (2): 123-30. [PMID:15078187]
Hogg RC, Raggenbass M, Bertrand D. (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol, 147: 1-46. [PMID:12783266]
Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P. (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem, 48 (15): 4705-45. [PMID:16033252]
Jones AK, Buckingham SD, Sattelle DB. (2010) Proteins interacting with nicotinic acetylcholine receptors: expanding functional and therapeutic horizons. Trends Pharmacol Sci, 31 (10): 455-62. [PMID:20674046]
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J, 274 (15): 3799-845. [PMID:17651090]
Letchworth SR, Whiteaker P. (2011) Progress and challenges in the study of α6-containing nicotinic acetylcholine receptors. Biochem Pharmacol, 82 (8): 862-72. [PMID:21736871]
* Lukas RJ, Changeux JP, Le Novère N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC et al.. (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev, 51 (2): 397-401. [PMID:10353988]
Millar NS. (2008) RIC-3: a nicotinic acetylcholine receptor chaperone. Br J Pharmacol, 153 Suppl 1: S177-83. [PMID:18246096]
Millar NS, Gotti C. (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology, 56 (1): 237-46. [PMID:18723036]
Millar NS, Harkness PC. (2008) Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol, 25 (4): 279-92. [PMID:18446614]
Miwa JM, Freedman R, Lester HA. (2011) Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses. Neuron, 70 (1): 20-33. [PMID:21482353]
Olivera BM, Quik M, Vincler M, McIntosh JM. (2008) Subtype-selective conopeptides targeted to nicotinic receptors: Concerted discovery and biomedical applications. Channels (Austin), 2 (2): 143-52. [PMID:18849660]
Pandya A, Yakel JL. (2011) Allosteric modulators of the α4β2 subtype of neuronal nicotinic acetylcholine receptors. Biochem Pharmacol, 82 (8): 952-8. [PMID:21596025]
Romanelli MN, Gratteri P, Guandalini L, Martini E, Bonaccini C, Gualtieri F. (2007) Central nicotinic receptors: structure, function, ligands, and therapeutic potential. ChemMedChem, 2 (6): 746-67. [PMID:17295372]
Rucktooa P, Smit AB, Sixma TK. (2009) Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol, 78 (7): 777-87. [PMID:19576182]
Sharma G, Vijayaraghavan S. (2008) Nicotinic receptors containing the alpha7 subunit: a model for rational drug design. Curr Med Chem, 15 (28): 2921-32. [PMID:19075644]
Sine SM, Engel AG. (2006) Recent advances in Cys-loop receptor structure and function. Nature, 440 (7083): 448-55. [PMID:16554804]
Steinlein OK, Bertrand D. (2008) Neuronal nicotinic acetylcholine receptors: from the genetic analysis to neurological diseases. Biochem Pharmacol, 76 (10): 1175-83. [PMID:18691557]
* Stokes C, Treinin M, Papke RL. (2015) Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol Sci, 36 (8): 514-23. [PMID:26067101]
Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov, 8 (9): 733-50. [PMID:19721446]
Tsetlin V, Hucho F. (2009) Nicotinic acetylcholine receptors at atomic resolution. Curr Opin Pharmacol, 9 (3): 306-10. [PMID:19428299]
Tsetlin V, Kuzmin D, Kasheverov I. (2011) Assembly of nicotinic and other Cys-loop receptors. J Neurochem, 116 (5): 734-41. [PMID:21214570]
Tsetlin V, Utkin Y, Kasheverov I. (2009) Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochem Pharmacol, 78 (7): 720-31. [PMID:19501053]
Unwin N. (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol, 346 (4): 967-89. [PMID:15701510]
* Wang J, Lindstrom J. (2018) Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors. Br J Pharmacol, 175 (11): 1805-1821. [PMID:28199738]
* Wu J, Liu Q, Tang P, Mikkelsen JD, Shen J, Whiteaker P, Yakel JL. (2016) Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain. Trends Pharmacol Sci, 37 (7): 562-574. [PMID:27179601]
Wu J, Lukas RJ. (2011) Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol, 82 (8): 800-7. [PMID:21787755]
Yang KC, Jin GZ, Wu J. (2009) Mysterious alpha6-containing nAChRs: function, pharmacology, and pathophysiology. Acta Pharmacol Sin, 30 (6): 740-51. [PMID:19498417]
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. (2009) Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life, 61 (4): 407-23. [PMID:19319967]
1. Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, Myers JK, Wolfe ML, Groppi VE, Thornburgh BA et al.. (2008) Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide as an agonist of the alpha7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett, 18 (12): 3611-5. [PMID:18490160]
2. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev, 89 (1): 73-120. [PMID:19126755]
3. Anderson DJ, Bunnelle W, Surber B, Du J, Surowy C, Tribollet E, Marguerat A, Bertrand D, Gopalakrishnan M. (2008) [3H]A-585539 [(1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1]heptane], a novel high-affinity alpha7 neuronal nicotinic receptor agonist: radioligand binding characterization to rat and human brain. J Pharmacol Exp Ther, 324 (1): 179-87. [PMID:17959745]
4. Araud T, Wonnacott S, Bertrand D. (2010) Associated proteins: The universal toolbox controlling ligand gated ion channel function. Biochem Pharmacol, 80 (2): 160-9. [PMID:20346921]
5. Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E et al.. (2007) Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci, 27 (39): 10578-87. [PMID:17898229]
6. Bodnar AL, Cortes-Burgos LA, Cook KK, Dinh DM, Groppi VE, Hajos M, Higdon NR, Hoffmann WE, Hurst RS, Myers JK et al.. (2005) Discovery and structure-activity relationship of quinuclidine benzamides as agonists of alpha7 nicotinic acetylcholine receptors. J Med Chem, 48 (4): 905-8. [PMID:15715459]
7. Broad LM, Zwart R, Pearson KH, Lee M, Wallace L, McPhie GI, Emkey R, Hollinshead SP, Dell CP, Baker SR et al.. (2006) Identification and pharmacological profile of a new class of selective nicotinic acetylcholine receptor potentiators. J Pharmacol Exp Ther, 318 (3): 1108-17. [PMID:16738207]
8. Buisson B, Gopalakrishnan M, Arneric SP, Sullivan JP, Bertrand D. (1996) Human alpha4beta2 neuronal nicotinic acetylcholine receptor in HEK 293 cells: A patch-clamp study. J Neurosci, 16 (24): 7880-91. [PMID:8987816]
9. Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK. (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron, 41 (6): 907-14. [PMID:15046723]
10. Changeux JP, Taly A. (2008) Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med, 14 (3): 93-102. [PMID:18262468]
11. Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC. (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther, 280 (1): 346-56. [PMID:8996215]
12. Chen Y, Sharples TJ, Phillips KG, Benedetti G, Broad LM, Zwart R, Sher E. (2003) The nicotinic alpha 4 beta 2 receptor selective agonist, TC-2559, increases dopamine neuronal activity in the ventral tegmental area of rat midbrain slices. Neuropharmacology, 45 (3): 334-44. [PMID:12871651]
13. Coe JW, Brooks PR, Wirtz MC, Bashore CG, Bianco KE, Vetelino MG, Arnold EP, Lebel LA, Fox CB, Tingley 3rd FD et al.. (2005) 3,5-Bicyclic aryl piperidines: a novel class of alpha4beta2 neuronal nicotinic receptor partial agonists for smoking cessation. Bioorg Med Chem Lett, 15 (22): 4889-97. [PMID:16171993]
14. Collingridge GL, Olsen RW, Peters J, Spedding M. (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology, 56 (1): 2-5. [PMID:18655795]
15. Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L. (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci, 10 (8): 953-62. [PMID:17643119]
16. Dinklo T, Shaban H, Thuring JW, Lavreysen H, Stevens KE, Zheng L, Mackie C, Grantham C, Vandenberk I, Meulders G et al.. (2011) Characterization of 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942), a novel positive allosteric modulator of the {alpha}7 nicotinic acetylcholine receptor. J Pharmacol Exp Ther, 336 (2): 560-74. [PMID:21084390]
17. Dogruer D, Lee M, Dukat M, Damaj MI, Martin BR, Glennon RA. (2004) 3-(4-Aminobutyn-1-yl)pyridines: binding at alpha 4 beta 2 nicotinic cholinergic receptors. Bioorg Med Chem Lett, 14 (2): 523-6. [PMID:14698195]
18. Gill JK, Savolainen M, Young GT, Zwart R, Sher E, Millar NS. (2011) Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci USA, 108 (14): 5867-72. [PMID:21436053]
19. Gordon JC, Phillips E, Gurley DA, Heys JR, Lazor LA, Barthlow HG, Mallamaci MA, Keith RA. (2010) In vitro binding characteristics of [3H]AZ11637326, a novel alpha7-selective neuronal nicotinic receptor agonist radioligand. Eur J Pharmacol, 645 (1-3): 63-9. [PMID:20674564]
20. Gotti C, Clementi F, Fornari A, Gaimarri A, Guiducci S, Manfredi I, Moretti M, Pedrazzi P, Pucci L, Zoli M. (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol, 78 (7): 703-11. [PMID:19481063]
21. Gotti C, Zoli M, Clementi F. (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci, 27 (9): 482-91. [PMID:16876883]
22. Hauser TA, Kucinski A, Jordan KG, Gatto GJ, Wersinger SR, Hesse RA, Stachowiak EK, Stachowiak MK, Papke RL, Lippiello PM et al.. (2009) TC-5619: an alpha7 neuronal nicotinic receptor-selective agonist that demonstrates efficacy in animal models of the positive and negative symptoms and cognitive dysfunction of schizophrenia. Biochem Pharmacol, 78 (7): 803-12. [PMID:19482012]
23. Hibbs RE, Gouaux E. (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature, 474 (7349): 54-60. [PMID:21572436]
24. Hurst RS, Hajós M, Raggenbass M, Wall TM, Higdon NR, Lawson JA, Rutherford-Root KL, Berkenpas MB, Hoffmann WE, Piotrowski DW et al.. (2005) A novel positive allosteric modulator of the alpha7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci, 25 (17): 4396-405. [PMID:15858066]
25. Hurth K, et. al. MEDI 222: Identification of AQW051, an alpha7 nicotinic acetylcholine receptor partial agonist for the treatment of cognitive impairment associated with schizophrenia. Accessed on 06/04/2014. Modified on 06/04/2014. ACS Med Chem Meeting Abstracts, March 2014, http://www.acsmedchem.org/mediabstracts2014.pdf
26. Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P. (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem, 48 (15): 4705-45. [PMID:16033252]
27. Jones AK, Buckingham SD, Sattelle DB. (2010) Proteins interacting with nicotinic acetylcholine receptors: expanding functional and therapeutic horizons. Trends Pharmacol Sci, 31 (10): 455-62. [PMID:20674046]
28. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J, 274 (15): 3799-845. [PMID:17651090]
29. Lee CH, Zhu C, Malysz J, Campbell T, Shaughnessy T, Honore P, Polakowski J, Gopalakrishnan M. (2011) α4β2 neuronal nicotinic receptor positive allosteric modulation: an approach for improving the therapeutic index of α4β2 nAChR agonists in pain. Biochem Pharmacol, 82 (8): 959-66. [PMID:21763685]
30. Lukas RJ, Changeux JP, Le Novère N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC et al.. (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev, 51 (2): 397-401. [PMID:10353988]
31. Malysz J, Grønlien JH, Anderson DJ, Håkerud M, Thorin-Hagene K, Ween H, Wetterstrand C, Briggs CA, Faghih R, Bunnelle WH et al.. (2009) In vitro pharmacological characterization of a novel allosteric modulator of alpha 7 neuronal acetylcholine receptor, 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), exhibiting unique pharmacological profile. J Pharmacol Exp Ther, 330 (1): 257-67. [PMID:19389923]
32. Mazurov AA, Speake JD, Yohannes D. (2011) Discovery and development of α7 nicotinic acetylcholine receptor modulators. J Med Chem, 54 (23): 7943-61. [PMID:21919481]
33. Millar NS. (2008) RIC-3: a nicotinic acetylcholine receptor chaperone. Br J Pharmacol, 153 Suppl 1: S177-83. [PMID:18246096]
34. Millar NS, Gotti C. (2009) Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology, 56 (1): 237-46. [PMID:18723036]
35. No authors listed. (2004) Natalizumab: AN 100226, anti-4alpha integrin monoclonal antibody. Drugs R D, 5 (2): 102-7. [PMID:15293871]
36. Papke RL, Dwoskin LP, Crooks PA, Zheng G, Zhang Z, McIntosh JM, Stokes C. (2008) Extending the analysis of nicotinic receptor antagonists with the study of alpha6 nicotinic receptor subunit chimeras. Neuropharmacology, 54 (8): 1189-200. [PMID:18448138]
37. Papke RL, Sanberg PR, Shytle RD. (2001) Analysis of mecamylamine stereoisomers on human nicotinic receptor subtypes. J Pharmacol Exp Ther, 297 (2): 646-56. [PMID:11303054]
38. Paul M, Kindler CH, Fokt RM, Dresser MJ, Dipp NC, Yost CS. (2002) The potency of new muscle relaxants on recombinant muscle-type acetylcholine receptors. Anesth Analg, 94 (3): 597-603; table of contents. [PMID:11867382]
39. Rucktooa P, Smit AB, Sixma TK. (2009) Insight in nAChR subtype selectivity from AChBP crystal structures. Biochem Pharmacol, 78 (7): 777-87. [PMID:19576182]
40. Sine SM, Engel AG. (2006) Recent advances in Cys-loop receptor structure and function. Nature, 440 (7083): 448-55. [PMID:16554804]
41. Strømgaard K, Mellor IR, Andersen K, Neagoe I, Pluteanu F, Usherwood PN, Krogsgaard-Larsen P, Jaroszewski JW. (2002) Solid-phase synthesis and pharmacological evaluation of analogues of PhTX-12-A potent and selective nicotinic acetylcholine receptor antagonist. Bioorg Med Chem Lett, 12 (8): 1159-62. [PMID:11934578]
42. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov, 8 (9): 733-50. [PMID:19721446]
43. Timmermann DB, Grønlien JH, Kohlhaas KL, Nielsen EØ, Dam E, Jørgensen TD, Ahring PK, Peters D, Holst D, Christensen JK et al.. (2007) An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther, 323 (1): 294-307. [PMID:17625074]
44. Wang X, Daley C, Gakhar V, Lange HS, Vardigan JD, Pearson M, Zhou X, Warren L, Miller CO, Belden M et al.. (2020) Pharmacological Characterization of the Novel and Selective α7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375. J Pharmacol Exp Ther, 373 (2): 311-324. [PMID:32094294]
45. Williams DK, Wang J, Papke RL. (2011) Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol, 82 (8): 915-30. [PMID:21575610]
46. Wishka DG, Walker DP, Yates KM, Reitz SC, Jia S, Myers JK, Olson KL, Jacobsen EJ, Wolfe ML, Groppi VE et al.. (2006) Discovery of N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide, an agonist of the alpha7 nicotinic acetylcholine receptor, for the potential treatment of cognitive deficits in schizophrenia: synthesis and structure--activity relationship. J Med Chem, 49 (14): 4425-36. [PMID:16821801]
47. Wu J, Liu Q, Yu K, Hu J, Kuo YP, Segerberg M, St John PA, Lukas RJ. (2006) Roles of nicotinic acetylcholine receptor beta subunits in function of human alpha4-containing nicotinic receptors. J Physiol (Lond.), 576 (Pt 1): 103-18. [PMID:16825297]
48. Wu J, Lukas RJ. (2011) Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol, 82 (8): 800-7. [PMID:21787755]
49. Yang KC, Jin GZ, Wu J. (2009) Mysterious alpha6-containing nAChRs: function, pharmacology, and pathophysiology. Acta Pharmacol Sin, 30 (6): 740-51. [PMID:19498417]
50. Young GT, Zwart R, Walker AS, Sher E, Millar NS. (2008) Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci USA, 105 (38): 14686-91. [PMID:18791069]
Subcommittee members:
Neil S. Millar (Chairperson)
Cecilia Gotti
Michael. J. Marks
Susan Wonnacott |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol. 180 Suppl 2:S145-S222.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Commonly used agonists of nACh receptors that display limited discrimination in functional assays between receptor subtypes include A-85380, cytisine, DMPP, epibatidine, nicotine and the natural transmitter, ACh. A summary of their profile across differing receptors is provided in [21] and quantitative data across numerous assay systems are summarized in [26]. Quantitative data presented in the table for commonly used antagonists and channel blockers for human receptors studied under voltage-clamp are from [8,11,36-38,47]. Type I PAMs increase peak agonist-evoked responses but have little, or no, effect on the rate of desensitization of α7 nicotinic ACh receptors whereas type II PAMs also cause a large reduction in desensitization (reviewed in [45]).