Top ▲

Farnesoid X receptor

Click here for help

Target id: 603

Nomenclature: Farnesoid X receptor

Systematic Nomenclature: NR1H4

Family: 1H. Liver X receptor-like receptors

Gene and Protein Information Click here for help
Species AA Chromosomal Location Gene Symbol Gene Name Reference
Human 486 12q23.1 NR1H4 nuclear receptor subfamily 1 group H member 4 11
Mouse 484 10 44.98 cM Nr1h4 nuclear receptor subfamily 1, group H, member 4 44
Rat 469 7q13 Nr1h4 nuclear receptor subfamily 1, group H, member 4 11
Previous and Unofficial Names Click here for help
FXR | HRR1 | RIP14 | Bile acid receptor | FXRα | farnesoid X activated receptor | farnesol receptor HRR-1 | retinoid X receptor-interacting protein 14 | RXR-interacting protein 14 | Rxrip14 | nuclear receptor subfamily 1
Database Links Click here for help
Alphafold
CATH/Gene3D
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  CRYSTAL STRUCTURE OF FARNESOID X-ACTIVATED RECEPTOR COMPLEXED WITH COMPOUND-32
PDB Id:  7TRB
Ligand:  BMS-986339
Resolution:  2.15Å
Species:  Human
References:  34
Image of receptor 3D structure from RCSB PDB
Description:  Bile Acid Receptor ligand binding domain - cocrystallised with agonist
PDB Id:  1OT7
Ligand:  obeticholic acid
Resolution:  2.9Å
Species:  Rat
References:  32
Natural/Endogenous Ligands Click here for help
chenodeoxycholic acid
cholic acid
deoxycholic acid
lithocholic acid
22R-hydroxycholesterol
Comments: A series of bile acids are natural ligands
Potency order (Human)
chenodeoxycholic acid > lithocholic acid, deoxycholic acid  [30,35]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists Click here for help
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
tropifexor Small molecule or natural product Ligand has a PDB structure Hs Agonist 9.7 pEC50 46
pEC50 9.7 (EC50 2x10-10 M) [46]
Description: In a HTRF assay.
nidufexor Small molecule or natural product Hs Partial agonist 9.3 pEC50 4
pEC50 9.3 (EC50 5x10-10 M) [4]
Description: Determined in a HTRF FXR coactivator interaction assay using GST-tagged hFXR ligand binding domain and biotinylated SRC-1 peptide.
HPG1860 Small molecule or natural product Hs Agonist 8.3 pEC50 33
pEC50 8.3 (EC50 5x10-9 M) [33]
Description: Determined in a TR-FRET based FXR bioactivity assay
GW4064 Small molecule or natural product Ligand has a PDB structure Hs Agonist 7.8 pEC50 31
pEC50 7.8 [31]
cilofexor Small molecule or natural product Ligand has a PDB structure Hs Agonist >7.6 pEC50 22
pEC50 >7.6 (EC50 <2.5x10-8 M) [22]
Description: EC50 determined as the ability of cilofexor to modulate the interaction between the purified bacterial expressed FXR ligand binding domain (LBD) and a synthetic biotinylated peptide based on residues 676-700 of SRC1, in a TR-FRET assay.
INT-767 Small molecule or natural product Click here for species-specific activity table Hs Agonist 7.5 pEC50 39
pEC50 7.5 (EC50 3x10-8 M) [39]
Description: Measured using an AlphaScreen assay.
BMS-986339 Small molecule or natural product Hs Agonist 7.5 pEC50 34
pEC50 7.5 (EC50 3.4x10-8 M) [34]
Description: Dtermined by measuring the transcriptional activity of FXR using an FXR-LBD/Gal4 luciferase reporter system
BMS-986318 Small molecule or natural product Hs Agonist 7.3 pEC50 3
pEC50 7.3 (EC50 5.3x10-8 M) [3]
Description: Activation of FXR as determined in a FXR Gal4 reporter assay
obeticholic acid Small molecule or natural product Approved drug Primary target of this compound Ligand has a PDB structure Hs Agonist 7.0 pEC50 36
pEC50 7.0 (EC50 9.9x10-8 M) [36]
fexaramine Small molecule or natural product Hs Agonist 6.6 pEC50 9
pEC50 6.6 [9]
compound 25 [PMID: 32687365] Small molecule or natural product Click here for species-specific activity table Immunopharmacology Ligand Hs Agonist 6.0 pEC50 42
pEC50 6.0 (EC50 9.4x10-7 M) [42]
22R-hydroxycholesterol Small molecule or natural product Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 5.5 pEC50 8
pEC50 5.5 [8]
chenodeoxycholic acid Small molecule or natural product Approved drug Primary target of this compound Click here for species-specific activity table Ligand is endogenous in the given species Ligand has a PDB structure Hs Agonist 5.3 pEC50 35,49
pEC50 5.3 [35,49]
lithocholic acid Small molecule or natural product Ligand is endogenous in the given species Ligand has a PDB structure N/A Agonist 5.3 pEC50 30,35,49
pEC50 5.3 [30,35,49]
cholic acid Small molecule or natural product Approved drug Ligand is endogenous in the given species Ligand has a PDB structure N/A Agonist 4.0 – 5.0 pEC50 35,49
pEC50 4.0 – 5.0 [35,49]
deoxycholic acid Small molecule or natural product Approved drug Ligand is endogenous in the given species Ligand has a PDB structure N/A Agonist 4.0 pEC50 28,35,49
pEC50 4.0 [28,35,49]
View species-specific agonist tables
Antagonists Click here for help
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
guggulsterone Small molecule or natural product Mm Antagonist 5.0 pEC50 48
pEC50 5.0 [48]
compound 3f [Festa et al., 2019] Small molecule or natural product Hs Antagonist 6.2 pIC50 10
pIC50 6.2 (IC50 5.8x10-7 M) [10]
Description: Cellular potency (HepG2 cells) measured as antagonism of CDCA-induced FXR activation in a transactivation reporter assay.
guggulsterone Small molecule or natural product Hs Antagonist 5.7 – 6.0 pIC50 50
pIC50 5.7 – 6.0 (IC50 2x10-6 – 1x10-6 M) [50]
View species-specific antagonist tables
Immunopharmacology Comments
FXR is predominantly expressed in liver, intestine, kidney and adipose tissue, but has also been detected in immune cells (CD4+, CD8+, CD19+ and CD14+ cells) [43], albeit at much lower levels than in the primary sites of expression.

FXR in inflammation:

FXR protects against innate intestinal and hepatic inflammation in animal models.

FXR expression is reduced in biopsy specimens from patients with the autoimmine conditions systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD).

FXR activation in human monocytes (from healthy controls and MS patients) induces an anti-inflammatory phenotype facilitating control of effector T cell proliferation [16], suggesting that FXR has a regulatory effect in the control of T cell-mediated autoimmunity. This effect is IL-10 dependent.
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Immune regulation
Immuno Process:  Cytokine production & signalling
Immuno Process:  Cellular signalling
Immuno Process:  Chemotaxis & migration
DNA Binding Click here for help
Structure:  RXR partner
HRE core sequence:  AGTTCAnTGAACT
Response element:  Other - see comments
DNA Binding Comments
FXR binds IR1
Main Co-regulators Click here for help
Name Activity Specific Ligand dependent AF-2 dependent Comments References
PPARGC1A Co-activator No Yes Yes 20,41,51
NCOA1 Co-activator No Yes Yes 30,35
MED1 Co-activator No Yes Yes 37
CARM1 Co-activator No Yes Yes 1
PRMT1 Co-activator No Yes No 40
TRRAP Co-activator No Yes No 47
Main Target Genes Click here for help
Name Species Effect Technique Comments References
VLDLR Human Activated 6
NR0B2 Human Activated Transient transfection, EMSA NR0B2 is a nuclear receptor also commonly known as short heterodimer partner (SHP) 13,27
ABCB11 Human Activated Transient transfection, EMSA progressive familial intrahepatic cholestasis 2, bile salt export pump 1
FABP6 Human Activated Transient transfection, EMSA Fatty acid binding protein 6, ileal 14
ABCB4 Human Activated Transient transfection, EMSA 7
FGF19 Human Activated Transient transfection, EMSA 15
ABCC2 Human Activated Transient transfection, EMSA multidrug resistance associated protein 2 (MRP2multidrug resistance associated protein 2 (MRP2) 29
SLCO1B3 Human Activated Transient transfection, EMSA solute carrier organic anion transporter family member 1B3 (OATP1B3; SLCO1B3) 19
SLC27A5 Human Activated Transient transfection, EMSA bile acid-CoA synthetase (BACS) 38
SLC3A1 Human Activated Transient transfection, EMSA bile acid-CoA: amino acid N-acetyltransferase (BAT) 38
APOAI Human Repressed Transient transfection, EMSA apolipoprotein A-I (APOAI): Repressed by FXR binding as a monomer to negative FXR response element. 6
APOC2 Human Repressed Transient transfection, EMSA apolipoprotein C-II (ApoCII) 21
APOE Human Activated APOE- apolipoprotein E. 29
C3 Human Activated Transient transfection, EMSA complement component 3 26
PDK4 Human Activated pyruvate dehydrogenase kinase, isozyme 4 41
PLTP Human Activated Transient transfection, EMSA phospholipid transfer protein 48
PPARA Human Activated Transient transfection, EMSA The mouse PPARa gene is not induced. 37
Fibrinogen Human Activated 2
KNG1 Human Activated Transient transfection, EMSA 7
SDC1 Human Activated Transient transfection, EMSA CD138, syndecan-1, SYND1 9
VIPR1 Human Activated 5
alpha-crystallin Human Activated Transient transfection, EMSA 25
organic solute transporter α-β Human Activated 12,24,53
Abcb4 Mouse Activated Transient transfection, EMSA 17-18
Apoc3 Mouse Repressed ChIP, Transient transfection, EMSA 6
Tissue Distribution Click here for help
Liver, small intestine, colon, kidney and adrenal
Expression level:  High
Species:  Mouse
Technique:  In situ hybridisation,Q-PCR, Northern Blot.
References:  11,44,52
Physiological Consequences of Altering Gene Expression Click here for help
FXR-null mice have elevated serum bile acids, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. The also have reduced bile acid pools and reduced fecal bile acid excretion, and are susceptible to cholesterol gallstone disease.
Species:  Mouse
Tissue:  Various
Technique:  Gene knockout
References:  23,45
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Nr1h4tm1Kok Nr1h4tm1Kok/Nr1h4tm1Kok
involves: 129P2/OlaHsd * C57BL/6J
MGI:1352464  MP:0004773 abnormal bile composition PMID: 12917447 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: 129X1/SvJ
MGI:1352464  MP:0004773 abnormal bile composition PMID: 17720959 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0005365 abnormal bile salt homeostasis PMID: 11030617 
Nr1h4tm1Kok Nr1h4tm1Kok/Nr1h4tm1Kok
involves: 129P2/OlaHsd * C57BL/6J
MGI:1352464  MP:0005365 abnormal bile salt homeostasis PMID: 12917447 
Nr1h4tm1.1Gonz|Tg(Vil-cre)997Gum Nr1h4tm1.1Gonz/Nr1h4tm1.1Gonz,Tg(Vil-cre)997Gum/0
involves: 129X1/SvJ * C57BL/6 * SJL
MGI:1352464  MGI:2446957  MP:0005365 abnormal bile salt homeostasis PMID: 17720959 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0004774 abnormal bile salt level PMID: 11030617 
Nr1h4tm1Kok Nr1h4tm1Kok/Nr1h4tm1Kok
involves: 129P2/OlaHsd * C57BL/6J
MGI:1352464  MP:0004772 abnormal bile secretion PMID: 12917447 
Nr1h4tm1Kok Nr1h4tm1Kok/Nr1h4tm1Kok
involves: 129P2/OlaHsd * C57BL/6J
MGI:1352464  MP:0009642 abnormal blood homeostasis PMID: 12917447 
Nr1h4tm1.2Auw Nr1h4tm1.2Auw/Nr1h4tm1.2Auw
involves: 129/Sv * C57BL/6J
MGI:1352464  MP:0000607 abnormal hepatocyte morphology PMID: 19815629 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0000598 abnormal liver morphology PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0005150 cachexia PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0005534 decreased body temperature PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0010182 decreased susceptibility to weight gain PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0002628 hepatic steatosis PMID: 11030617 
Nr1h4tm1Kok Nr1h4tm1Kok/Nr1h4tm1Kok
involves: 129P2/OlaHsd * C57BL/6J
MGI:1352464  MP:0004789 increased bile salt level PMID: 12917447 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: 129X1/SvJ
MGI:1352464  MP:0004789 increased bile salt level PMID: 17720959 
Nr1h4tm1.1Gonz|Tg(Vil-cre)997Gum Nr1h4tm1.1Gonz/Nr1h4tm1.1Gonz,Tg(Vil-cre)997Gum/0
involves: 129X1/SvJ * C57BL/6 * SJL
MGI:1352464  MGI:2446957  MP:0004789 increased bile salt level PMID: 17720959 
Nr1h4tm1.1Gonz|Tg(Alb1-cre)1Dlr Nr1h4tm1.1Gonz/Nr1h4tm1.1Gonz,Tg(Alb1-cre)1Dlr/0
involves: 129X1/SvJ * C57BL/6
MGI:1352464  MGI:2176944  MP:0004789 increased bile salt level PMID: 17720959 
Nr1h4tm1.2Auw Nr1h4tm1.2Auw/Nr1h4tm1.2Auw
involves: 129/Sv * C57BL/6J
MGI:1352464  MP:0004789 increased bile salt level PMID: 19815629 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
STOCK Nr1h4/J
MGI:1352464  MP:0002941 increased circulating alanine transaminase level PMID: 18820241 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
STOCK Nr1h4/J
MGI:1352464  MP:0005343 increased circulating aspartate transaminase level PMID: 18820241 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0005178 increased circulating cholesterol level PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: 129X1/SvJ
MGI:1352464  MP:0005178 increased circulating cholesterol level PMID: 17720959 
Nr1h4tm1.1Gonz|Tg(Alb1-cre)1Dlr Nr1h4tm1.1Gonz/Nr1h4tm1.1Gonz,Tg(Alb1-cre)1Dlr/0
involves: 129X1/SvJ * C57BL/6
MGI:1352464  MGI:2176944  MP:0005178 increased circulating cholesterol level PMID: 17720959 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
STOCK Nr1h4/J
MGI:1352464  MP:0005178 increased circulating cholesterol level PMID: 18820241 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0003980 increased circulating phospholipid level PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0001552 increased circulating triglyceride level PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: 129X1/SvJ
MGI:1352464  MP:0001552 increased circulating triglyceride level PMID: 17720959 
Nr1h4tm1.1Gonz|Tg(Alb1-cre)1Dlr Nr1h4tm1.1Gonz/Nr1h4tm1.1Gonz,Tg(Alb1-cre)1Dlr/0
involves: 129X1/SvJ * C57BL/6
MGI:1352464  MGI:2176944  MP:0001552 increased circulating triglyceride level PMID: 17720959 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
STOCK Nr1h4/J
MGI:1352464  MP:0001552 increased circulating triglyceride level PMID: 18820241 
Nr1h4tm1.2Auw Nr1h4tm1.2Auw/Nr1h4tm1.2Auw
involves: 129/Sv * C57BL/6J
MGI:1352464  MP:0003887 increased hepatocyte apoptosis PMID: 19815629 
Nr1h4tm1.2Auw Nr1h4tm1.2Auw/Nr1h4tm1.2Auw
involves: 129/Sv * C57BL/6J
MGI:1352464  MP:0003893 increased hepatocyte proliferation PMID: 19815629 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0010027 increased liver cholesterol level PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0009355 increased liver triglyceride level PMID: 11030617 
Nr1h4tm1Gonz Nr1h4tm1Gonz/Nr1h4tm1Gonz
involves: C57BL/6N
MGI:1352464  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 11030617 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Intrahepatic cholestasis of pregnancy
Orphanet: ORPHA69665

References

Show »

1. Ananthanarayanan M, Li S, Balasubramaniyan N, Suchy FJ, Walsh MJ. (2004) Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1. J Biol Chem, 279 (52): 54348-57. [PMID:15471871]

2. Anisfeld AM, Kast-Woelbern HR, Lee H, Zhang Y, Lee FY, Edwards PA. (2005) Activation of the nuclear receptor FXR induces fibrinogen expression: a new role for bile acid signaling. J Lipid Res, 46 (3): 458-68. [PMID:15604525]

3. Carpenter J, Wu G, Wang Y, Cook EM, Wang T, Sitkoff D, Rossi KA, Mosure K, Zhuo X, Cao GG et al.. (2021) Discovery of BMS-986318, a Potent Nonbile Acid FXR Agonist for the Treatment of Nonalcoholic Steatohepatitis. ACS Med Chem Lett, 12 (9): 1413-1420. [PMID:34531950]

4. Chianelli D, Rucker PV, Roland J, Tully DC, Nelson J, Liu X, Bursulaya B, Hernandez ED, Wu J, Prashad M et al.. (2020) Nidufexor (LMB763), a Novel FXR Modulator for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem, 63 (8): 3868-3880. [PMID:31940200]

5. Chignard N, Mergey M, Barbu V, Finzi L, Tiret E, Paul A, Housset C. (2005) VPAC1 expression is regulated by FXR agonists in the human gallbladder epithelium. Hepatology, 42 (3): 549-57. [PMID:16037943]

6. Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, Dallongeville J, Hum DW, Kuipers F, Staels B. (2002) Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest, 109 (7): 961-71. [PMID:11927623]

7. Cui J, Huang L, Zhao A, Lew JL, Yu J, Sahoo S, Meinke PT, Royo I, Pelaez F, Wright SD. (2003) Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J Biol Chem, 278 (12): 10214-20. [PMID:12525500]

8. Deng R, Yang D, Yang J, Yan B. (2006) Oxysterol 22(R)-hydroxycholesterol induces the expression of the bile salt export pump through nuclear receptor farsenoid X receptor but not liver X receptor. J Pharmacol Exp Ther, 317 (1): 317-25. [PMID:16371446]

9. Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer JL, Anisfeld AM, Edwards PA, Rosenfeld JM, Alvarez JG, Noel JP, Nicolaou KC, Evans RM. (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell, 11 (4): 1079-92. [PMID:12718892]

10. Festa C, Finamore C, Marchianò S, Di Leva FS, Carino A, Monti MC, Del Gaudio F, Ceccacci S, Limongelli V, Zampella A et al.. (2019) Investigation around the Oxadiazole Core in the Discovery of a New Chemotype of Potent and Selective FXR Antagonists. ACS Med Chem Lett, 10 (4): 504-510. DOI: 10.1021/acsmedchemlett.8b00534 [PMID:30996787]

11. Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, Evans RM, Weinberger C. (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell, 81 (5): 687-93. [PMID:7774010]

12. Frankenberg T, Rao A, Chen F, Haywood J, Shneider BL, Dawson PA. (2006) Regulation of the mouse organic solute transporter alpha-beta, Ostalpha-Ostbeta, by bile acids. Am J Physiol Gastrointest Liver Physiol, 290 (5): G912-22. [PMID:16357058]

13. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA. (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell, 6 (3): 517-26. [PMID:11030332]

14. Grober J, Zaghini I, Fujii H, Jones SA, Kliewer SA, Willson TM, Ono T, Besnard P. (1999) Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem, 274 (42): 29749-54. [PMID:10514450]

15. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang DY, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. (2003) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev, 17 (13): 1581-91. [PMID:12815072]

16. Hucke S, Herold M, Liebmann M, Freise N, Lindner M, Fleck AK, Zenker S, Thiebes S, Fernandez-Orth J, Buck D et al.. (2016) The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathol, 132 (3): 413-31. [PMID:27383204]

17. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, Luo G, Jones SA, Goodwin B, Richardson JA, Gerard RD, Repa JJ, Mangelsdorf DJ, Kliewer SA. (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab, 2 (4): 217-25. [PMID:16213224]

18. Jaye MC, Krawiec JA, Campobasso N, Smallwood A, Qiu C, Lu Q, Kerrigan JJ, De Los Frailes Alvaro M, Laffitte B, Liu WS, Marino JP, Meyer CR, Nichols JA, Parks DJ, Perez P, Sarov-Blat L, Seepersaud SD, Steplewski KM, Thompson SK, Wang P, Watson MA, Webb CL, Haigh D, Caravella JA, Macphee CH, Willson TM, Collins JL. (2005) Discovery of substituted maleimides as liver X receptor agonists and determination of a ligand-bound crystal structure. J Med Chem, 48 (17): 5419-22. [PMID:16107141]

19. Jung D, Podvinec M, Meyer UA, Mangelsdorf DJ, Fried M, Meier PJ, Kullak-Ublick GA. (2002) Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology, 122 (7): 1954-66. [PMID:12055601]

20. Kanaya E, Shiraki T, Jingami H. (2004) The nuclear bile acid receptor FXR is activated by PGC-1alpha in a ligand-dependent manner. Biochem J, 382 (Pt 3): 913-21. [PMID:15202934]

21. Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, Gonzalez FJ, Willson TM, Edwards PA. (2001) Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol, 15 (10): 1720-8. [PMID:11579204]

22. Kinzel O, Steeneck C, Kremoser C. (2019) FXR (NR1H4) binding and activity modulating compounds. Patent number: US10485795B2. Assignee: Gilead Sciences Inc. Priority date: 13/07/2011. Publication date: 26/11/2019.

23. Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F. (2003) Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem, 278 (43): 41930-7. [PMID:12917447]

24. Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA. (2006) The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol, 290 (3): G476-85. [PMID:16269519]

25. Lee FY, Kast-Woelbern HR, Chang J, Luo G, Jones SA, Fishbein MC, Edwards PA. (2005) Alpha-crystallin is a target gene of the farnesoid X-activated receptor in human livers. J Biol Chem, 280 (36): 31792-800. [PMID:16012168]

26. Li J, Pircher PC, Schulman IG, Westin SK. (2005) Regulation of complement C3 expression by the bile acid receptor FXR. J Biol Chem, 280 (9): 7427-34. [PMID:15590640]

27. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell, 6 (3): 507-15. [PMID:11030331]

28. Maisonneuve IM, Archer S, Glick SD. (1994) U50,488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci Lett, 181: 57-60. [PMID:7898771]

29. Mak PA, Kast-Woelbern HR, Anisfeld AM, Edwards PA. (2002) Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J Lipid Res, 43 (12): 2037-41. [PMID:12454263]

30. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. (1999) Identification of a nuclear receptor for bile acids. Science, 284 (5418): 1362-5. [PMID:10334992]

31. Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, Creech KL, Moore LB, Wilson JG, Lewis MC, Jones SA, Willson TM. (2000) Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem, 43 (16): 2971-4. [PMID:10956205]

32. Mi LZ, Devarakonda S, Harp JM, Han Q, Pellicciari R, Willson TM, Khorasanizadeh S, Rastinejad F. (2003) Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell, 11 (4): 1093-100. [PMID:12718893]

33. Mo C, Xu X, Zhang P, Peng Y, Zhao X, Chen S, Guo F, Xiong Y, Chu XJ, Xu X. (2023) Discovery of HPG1860, a Structurally Novel Nonbile Acid FXR Agonist Currently in Clinical Development for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem, 66 (14): 9363-9375. [PMID:37424079]

34. Nara SJ, Jogi S, Cheruku S, Kandhasamy S, Jaipuri F, Kathi PK, Reddy S, Sarodaya S, Cook EM, Wang T et al.. (2022) Discovery of BMS-986339, a Pharmacologically Differentiated Farnesoid X Receptor Agonist for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem, 65 (13): 8948-8960. [PMID:35704802]

35. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM. (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science, 284 (5418): 1365-8. [PMID:10334993]

36. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM. (2002) 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem, 45 (17): 3569-72. [PMID:12166927]

37. Pineda Torra I, Freedman LP, Garabedian MJ. (2004) Identification of DRIP205 as a coactivator for the Farnesoid X receptor. J Biol Chem, 279 (35): 36184-91. [PMID:15187081]

38. Pircher PC, Kitto JL, Petrowski ML, Tangirala RK, Bischoff ED, Schulman IG, Westin SK. (2003) Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem, 278 (30): 27703-11. [PMID:12754200]

39. Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, Orlandi S, Sadeghpour B, Wang XX, Jiang T et al.. (2010) Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol, 78 (4): 617-30. [PMID:20631053]

40. Rizzo G, Renga B, Antonelli E, Passeri D, Pellicciari R, Fiorucci S. (2005) The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. Mol Pharmacol, 68 (2): 551-8. [PMID:15911693]

41. Savkur RS, Thomas JS, Bramlett KS, Gao Y, Michael LF, Burris TP. (2005) Ligand-dependent coactivation of the human bile acid receptor FXR by the peroxisome proliferator-activated receptor gamma coactivator-1alpha. J Pharmacol Exp Ther, 312 (1): 170-8. [PMID:15329387]

42. Schierle S, Neumann S, Heitel P, Willems S, Kaiser A, Pollinger J, Merk D. (2020) Design and Structural Optimization of Dual FXR/PPARδ Activators. J Med Chem, 63 (15): 8369-8379. [PMID:32687365]

43. Schote AB, Turner JD, Schiltz J, Muller CP. (2007) Nuclear receptors in human immune cells: expression and correlations. Mol Immunol, 44 (6): 1436-45. [PMID:16837048]

44. Seol W, Choi HS, Moore DD. (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol Endocrinol, 9 (1): 72-85. [PMID:7760852]

45. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell, 102 (6): 731-44. [PMID:11030617]

46. Tully DC, Rucker PV, Chianelli D, Williams J, Vidal A, Alper PB, Mutnick D, Bursulaya B, Schmeits J, Wu X et al.. (2017) Discovery of Tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the Treatment of Cholestatic Liver Diseases and Nonalcoholic Steatohepatitis (NASH). J Med Chem, 60 (24): 9960-9973. [PMID:29148806]

47. Unno A, Takada I, Takezawa S, Oishi H, Baba A, Shimizu T, Tokita A, Yanagisawa J, Kato S. (2005) TRRAP as a hepatic coactivator of LXR and FXR function. Biochem Biophys Res Commun, 327 (3): 933-8. [PMID:15649435]

48. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD. (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science, 296 (5573): 1703-6. [PMID:11988537]

49. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell, 3 (5): 543-53. [PMID:10360171]

50. Wu J, Xia C, Meier J, Li S, Hu X, Lala DS. (2002) The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol, 16 (7): 1590-7. [PMID:12089353]

51. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. (2004) Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev, 18 (2): 157-69. [PMID:14729567]

52. Zhang Y, Kast-Woelbern HR, Edwards PA. (2003) Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem, 278 (1): 104-10. [PMID:12393883]

53. Zollner G, Wagner M, Moustafa T, Fickert P, Silbert D, Gumhold J, Fuchsbichler A, Halilbasic E, Denk H, Marschall HU, Trauner M. (2006) Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol, 290 (5): G923-32. [PMID:16357057]

Contributors

Show »

How to cite this page