Top ▲

PAR2

Click here for help

Target id: 348

Nomenclature: PAR2

Family: Proteinase-activated receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 397 5q13.3 F2RL1 F2R like trypsin receptor 1
Mouse 7 399 13 49.53 cM F2rl1 F2R like trypsin receptor 1
Rat 7 397 2q12 F2rl1 F2R like trypsin receptor 1
Previous and Unofficial Names Click here for help
GPR11 | coagulation factor II receptor-like 1 | Protease-activated receptor-2 | coagulation factor II (thrombin) receptor-like 1
Database Links Click here for help
Specialist databases
GPCRdb par2_human (Hs), par2_mouse (Mm), par2_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
SynPHARM
UniProtKB
Wikipedia
Selected 3D Structures Click here for help
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of a thermostabilised human protease-activated receptor-2 (PAR2) in complex with AZ3451 at 3.6 angstrom resolution.
PDB Id:  5NDZ
Ligand:  AZ3451
Resolution:  3.6Å
Species:  Human
References:  9
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of a thermostabilised human protease-activated receptor-2 (PAR2) in complex with AZ8838 at 2.8 angstrom resolution
PDB Id:  5NDD
Ligand:  AZ8838
Resolution:  2.8Å
Species:  Human
References:  9
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of a thermostabilised human protease-activated receptor-2 (PAR2) in ternary complex with Fab3949 and AZ7188 at 4.0 angstrom resolution
PDB Id:  5NJ6
Ligand:  AZ7188
Resolution:  4.0Å
Species:  Human
References:  9
Natural/Endogenous Ligands Click here for help
serine proteases
Agonist proteases (Human)
Trypsin, tryptase, TF/VIIa, Xa; elastase, neutrophil expressed; cathepsin S  [21,46]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
2-furoyl-LIGRLO-amide Peptide Hs Full agonist 5.4 pKi 40
pKi 5.4 [40]
Isox-Cha-Chg-Ala-Arg-Dpr(4FB)-NH2 Peptide Hs Agonist 7.9 pEC50 33
pEC50 7.9 (EC50 1.3x10-8 M) [33]
Isox-Cha-Chg-ARK(Sulfo-Cy5)-NH2 Peptide Ligand is labelled Hs Agonist 7.8 pEC50 32
pEC50 7.8 (EC50 1.6x10-8 M) [32]
AC264613 Small molecule or natural product Hs Agonist 7.5 pEC50 49
pEC50 7.5 (EC50 3.16x10-8 M) [49]
AY77 Peptide Hs Agonist 7.5 pEC50 58
pEC50 7.5 (EC50 3.3x10-8 M) [58]
AC-55541 Small molecule or natural product Hs Agonist 6.7 pEC50 49
pEC50 6.7 (EC50 1.99x10-7 M) [49]
AZ2429 Small molecule or natural product Hs Full agonist 6.7 pEC50 26
pEC50 6.7 (EC50 1.99x10-7 M) [26]
Description: Determined in an IP1 assay
GB110 Small molecule or natural product Hs Agonist 6.6 pEC50 5
pEC50 6.6 (EC50 2.8x10-7 M) [5]
AC-98170 Small molecule or natural product Hs Agonist 5.2 pEC50 49
pEC50 5.2 (EC50 6.31x10-6 M) [49]
SLIGKV-NH2 Peptide Hs Agonist - - 31
[31]
SLIGRL-NH2 Peptide Hs Agonist - - 31
[31]
trans-cinnamoyl-LIGRLO [N-[3H]propionyl]-NH2 Peptide Ligand is labelled Ligand is radioactive Hs Agonist - - 1
[1]
2-furoyl-LIGRL[N[3H]propionyl]-O-NH2 Peptide Ligand is labelled Ligand is radioactive Hs Agonist - - 18
[18]
2-furoyl-LIGRL[N-(Alexa Fluor 594)-O]-NH2 Peptide Ligand is labelled Hs Agonist - - 18
[18]
[3H]2-furoyl-LIGRL-NH2 Peptide Ligand is labelled Ligand is radioactive Hs Agonist - - 23
[23]
Agonist Comments
2-Furoyl-LIGRLO-NH2 activity was measured via calcium mobilisation in HEK 293 cells which constitutively coexpress human PAR1 and PAR2.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
AZ8838 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 6.5 pKd 9
pKd 6.5 (Kd 3.44x10-7 M) [9]
Description: Saturation binding of [3H]-AZ8838 antagonist to wild-type PAR2.
I-191 Small molecule or natural product Hs Antagonist 7.1 pIC50 20
pIC50 7.1 [20]
AZ8838 Small molecule or natural product Ligand has a PDB structure Immunopharmacology Ligand Hs Antagonist 5.6 – 5.8 pIC50 9
pIC50 5.8 (IC50 1.5x10-6 M) [9]
Description: Measuring SLIGRL-NH2-induced IP1 formation
pIC50 5.6 (IC50 2.3x10-6 M) [9]
Description: In a FLIPR assay measuring SLIGRL-NH2-induced calcium mobilisation.
GB88 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 5.7 pIC50 51
pIC50 5.7 (IC50 2x10-6 M) [51]
P2pal18S Peptide Hs Antagonist 5.4 pIC50
pIC50 5.4 (IC50 4x10-6 M)
Description: Measuring antagonism of calcium flux induced by PAR2 agonist SLIGRL.
C391 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 4.8 – 5.9 pIC50 6
pIC50 5.9 (IC50 1.3x10-6 M) [6]
Description: Antagonism of peptidomimetic-induced PAR2 Ca2+ signalling in 16HBE14o- cells.
pIC50 4.8 (IC50 1.43x10-5 M) [6]
Description: Antagonism of 2-at-LIGRL-NH2-induced ERK phosphorylation in 16HBE14o- cells.
AZ7188 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 5.2 pIC50 9
pIC50 5.2 (IC50 6x10-6 M) [9]
Description: Antagonism of SLIGRL-NH2-induced IP1 formation.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
AZ3451 Small molecule or natural product Primary target of this compound Ligand has a PDB structure Immunopharmacology Ligand Hs Negative 7.9 pKd 9
pKd 7.9 (Kd 1.35x10-8 M) [9]
Description: In a BIACORE assay.
AZ3451 Small molecule or natural product Ligand has a PDB structure Immunopharmacology Ligand Hs Negative 7.6 – 8.3 pIC50 9
pIC50 8.3 (IC50 5.4x10-9 M) [9]
Description: In a FLIPR calcium accumulation assay, vs. SLIGRL activation.
pIC50 7.6 (IC50 2.3x10-8 M) [9]
Description: Antagonism of SLIGRL-NH2-induced IP1 formation.
I-287 Small molecule or natural product Hs Negative 6.4 – 7.1 pIC50 3
pIC50 7.1 (IC50 7.24x10-8 M) functionally selective [3]
Description: Inhibition of Gαq activation in hPAR2-HEK293 cells
pIC50 6.4 (IC50 3.89x10-7 M) functionally selective [3]
Description: Inhibition of Gα13 activation in hPAR2-HEK293 cells
Immunopharmacology Comments
PAR2 receptors have been reported to elicit pain and inflammation through a neurogenic mechanism of action, causing release of substance P, activation of NK1 receptors, and sensitization of TRPV1 voltage-gated ion channels. This action can be negated using a selective NK1 receptor antagonist (L732,138) or a TRPV1 receptor antagonist (capsazepine) [15]. PAR2 receptors are expressed in immune cells of both the innate and adaptive immune systems and have been shown to play a role in several peripheral inflammatory conditions. PAR2 activation has been associated with allergic airway inflammation, and allergic sensitisation. Anti-PAR2 antibody or PAR2 inhibiting pepducin alleviate allergen-induced airway hyperresponsiveness and inflammation in mice [35]. PAR2 expression by astrocytes and microglia within the CNS suggests that PAR2 modulation may be a novel approach for developing therapeutics for CNS disorders with an inflammatory association [7]. A study in obese mice suggests that activation of PAR2 is associated with increased adipose expression of inflammatory factors [35].
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Antigen presentation
Immuno Process:  T cell (activation)
Immuno Process:  Immune regulation
Immuno Process:  Immune system development
Immuno Process:  Cytokine production & signalling
Immuno Process:  Chemotaxis & migration
Immuno Process:  Cellular signalling
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Physiological Consequences of Altering Gene Expression Click here for help
PAR2 knockout mice have elevated systolic arterial and pulse blood pressures. Gene deletion is associated with moderate elevation of systolic arterial pressure and pulse pressure in response to salt loading and angiotensin II infusion.
Species:  Mouse
Tissue:  Cardiovascular
Technique:  Gene knockouts
References:  41
Mice overexpressing PAR2 develop pulmonary hypertension after chronic exposure to cigarette smoke. Smoking in transgenic mice results in muscularisation of intrapulomary vessels, right ventricular hypertrophy, imbalances between vasoconstrictors and vasodilators, and enhanced production of growth factors.
Species:  Mouse
Tissue:  Pulmonary
Technique:  Gene over-expression
References:  14
PAR2 knockout mice develop less metastasis and have longer overall survival in a model of B16 melanoma.
Species:  Mouse
Tissue:  Various
Technique:  Gene knockouts
References:  44
PAR2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. PAR2 knockout mice have lower osteoclast surface, osteoblast surface and osteoid volume.
Species:  Mouse
Tissue:  Bone
Technique:  Gene knockouts
References:  16
PAR2 knockout mice are protected against myocarditis after infection with CVB3. PAR2 knockout decreased viral load and virus replication in cardiomyocytes and cardiac fibroblasts, resulting in decreased markers of cardiac infection.
Species:  Mouse
Tissue:  Cardiac
Technique:  Gene knockouts
References:  55
PAR2 deficient mice are protected against allergic sensitisation to common allergens. PAR2 knockout mice did not develop airway inflammation after sensitisation to house dust mite and German cockroach feces.
Species:  Mouse
Tissue:  Various
Technique:  Gene knockouts
References:  12-13,34,45,52
PAR2 knockout mice do not exhibit cancer-related pain behaviours. PAR2 deficient mice show reduced nociceptive pain markers in response to carcinoma-induced pain.
Species:  Mouse
Tissue:  Dorsal root ganglion, bone, head and neck carcinoma.
Technique:  Gene knockouts
References:  29,37
PAR2 deficient mice are protected against rheumatoid arthritis. PAR2 deficient mice have lower arthritis scores, produce less interleukin-17, synovial fibroblasts have slower rates of proliferation and invasion.
Species:  Mouse
Tissue:  Joints, spleen, lymph
Technique:  Gene knockouts
References:  8,11,57
After scrapie (prion) infection, PAR2 knockout mice had delayed onset of clinical symptoms and prolonged survival rates.
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  39
PAR2 knockout mice have reduced hepatic fibrosis. PAR2 deficiency reduced progression of liver fibrosis, hepatic collagen gene expression and hydroxyproline content in response to surgical destabilisation of the medial meniscus.
Species:  Mouse
Tissue:  Liver
Technique:  Gene knockouts
References:  28
PAR2 deficiency limits effects of osteoarthritis on cartilage in mice. PAR2 knockout mice had less knee swelling, less severe lesions and reduced subchondral bone surface.
Species:  Mouse
Tissue:  Cartilage
Technique:  Gene knockouts
References:  2,8
PAR2 knockout mice have slower activated-protein C-induced wound healing.
Species:  Mouse
Tissue:  Keratinocytes
Technique:  Gene knockouts
References: 
Mice lacking PAR2 are protected from weight gain and insulin resistance induced by a high-fat diet. PAR2 deficiency also confers protection from adipose tissue macrophage inflammation.
Species:  Mouse
Tissue:  Adipose tissue
Technique:  Gene knockouts
References:  4
PAR2 promotes vaccine-induced protection against Helicobacter infection in mice. PAR2 knockout mice have delayed spontaneous breast cancer development.
Species:  Mouse
Tissue:  Breast tissue
Technique:  Gene knockouts
References:  47,54
PAR2 knockout mice are protected against periodontal bone resorption and tissue destruction in models of chronic periodontitis. PAR2 knockout mice have less bone resorption and decreased mast cell infiltration and T-cell activation.
Species:  Mouse
Tissue:  Bone
Technique:  Gene knockouts
References:  56
PAR2 knockout mice are more susceptible to influenza A infection and had more severe associated lung inflammation.
Species:  Mouse
Tissue:  Pulmonary
Technique:  Gene knockouts
References:  27
PAR2 deficient mice have reduced renal inflammation markers in crescentic glomerulonephritis. PAR2 deficient mice had reduced crescent formation, proteinuria, serum creatinine and glomerular fibrin deposition in response to anti-glomerular basement membrane antibody-induced glomerulonephritis.
Species:  Mouse
Tissue:  Renal
Technique:  Gene knockouts
References:  42
PAR2 protects against pancreatitis. PAR2 knockout mice display more severe pancreatitis than wild type mice.
Species:  Mouse
Tissue:  Pancreas
Technique:  Gene knockouts
References:  24,50
PAR2 is required for revascuarisation in a model of hypoxia-induced angiogenesis. Genetic deletion of PAR2 abolished revascularisation of tissue-factor cytoplasmic domain-deleted mice.
Species:  Mouse
Tissue:  Cardiovascular
Technique:  Gene knockouts
References:  53
PAR2 deletion reduces inflammatory markers of Clostridium difficile toxin A enteritis. PAR2 knockout mice had decreased luminal fluid secretion, epithelial damage, edema and neutrophil infiltration.
Species:  Mouse
Tissue:  Epithelium
Technique:  Gene knockouts
References:  10
PAR2 knockout mice have a decreased inflammatory response and reduced alveolar bone loss after infection with Porphyromonas gingivalis.
Species:  Mouse
Tissue:  Oral subcutaneous tissue and bone
Technique:  Gene knockouts
References:  19
PAR2-deficiency reduces levels of neuroinflammatory markers in experimental models of autoimmune encephalomyelitis and multiple sclerosis. PAR2 knockout mice had reduced inflammatory gene expression, demyelination and axonal injury in response to induced autoimmune encephalitis.
Species:  Mouse
Tissue:  CNS
Technique:  Gene knockouts
References:  43
PAR2-deficiency increases acute focal ischemic brain injury. PAR2 knockout mice had increased infarct volume, decreased extraceullar signal-regulated kinase activation and reactive astroglial activation.
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  22
PAR2-deficiency reduces markers of cutaneous inflammation. PAR2 knockout mice had decreased ear-swelling responses, plasma extravasation and leucocyte adherence in models of allergic and toxic dermatitis.
Species:  Mouse
Tissue:  Cutaneous tissue
Technique:  Gene knockouts
References:  25,48
PAR2-deficiency delays onset of microvascular inflammation. PAR2 knockout mice exhibited a decrease in leukocyte rolling flux in microvascular arterioles after surgical trauma.
Species:  Mouse
Tissue:  Vascular, endothelial
Technique:  Gene knockouts
References:  36
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101910  MP:0005085 abnormal gallbladder physiology PMID: 17431214 
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101910  MP:0002078 abnormal glucose homeostasis PMID: 17992256 
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101910  MP:0003627 abnormal leukocyte tethering or rolling PMID: 11086091 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0001970 abnormal pain threshold PMID: 17623652 
F2rl1tm1Wrf F2rl1tm1Wrf/F2rl1tm1Wrf
involves: 129P2/OlaHsd
MGI:101910  MP:0008872 abnormal physiological response to xenobiotic PMID: 12511586  17304351 
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae
MGI:101910  MP:0005501 abnormal skin physiology PMID: 16691196  18156206 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd * C57BL/6J
MGI:101910  MP:0000230 abnormal systemic arterial blood pressure PMID: 9918574 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd
MGI:101910  MP:0002733 abnormal thermal nociception PMID: 11433347 
F2rl1tm1Bpd|Tg(MMTV-PyVT)634Mul F2rl1tm1Bpd/F2rl1tm1Bpd,Tg(MMTV-PyVT)634Mul/0
B6.Cg-F2rl1 Tg(MMTV-PyVT)634Mul
MGI:101910  MGI:2679594  MP:0010144 abnormal tumor vascularization PMID: 18757438 
F2rl1tm1Wrf F2rl1tm1Wrf/F2rl1tm1Wrf
involves: 129P2/OlaHsd
MGI:101910  MP:0008636 decreased circulating interleukin-18 level PMID: 16260585 
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
B6.129S4-F2rl1
MGI:101910  MP:0008127 decreased dendritic cell number PMID: 12759239 
F2rl1tm1Mslb F2rl1tm1Mslb/F2rl1tm1Mslb
involves: 129X1/SvJ * C57BL/6
MGI:101910  MP:0002492 decreased IgE level PMID: 12391252 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0001876 decreased inflammatory response PMID: 17623652 
F2rl1tm1Mslb F2rl1tm1Mslb/F2rl1tm1Mslb
involves: 129X1/SvJ * C57BL/6
MGI:101910  MP:0001876 decreased inflammatory response PMID: 12391252 
F2rl1tm1Bpd|Tg(MMTV-PyVT)634Mul F2rl1tm1Bpd/F2rl1tm1Bpd,Tg(MMTV-PyVT)634Mul/0
B6.Cg-F2rl1 Tg(MMTV-PyVT)634Mul
MGI:101910  MGI:2679594  MP:0010269 decreased mammary gland tumor incidence PMID: 18757438 
F2rl1tm1Wrf F2rl1tm1Wrf/F2rl1tm1Wrf
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 12511586 
F2rtm1Ajc|F2rl1tm1Cgh F2rtm1Ajc/F2rtm1Ajc,F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101802  MGI:101910  MP:0008770 decreased survivor rate PMID: 16434493 
F2r/F2rl1tm1.1Cgh F2r/F2rl1tm1.1Cgh/F2r/F2rl1tm1.1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101910  MP:0008770 decreased survivor rate PMID: 20152175 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
B6.129P2-F2rl1
MGI:101910  MP:0008734 decreased susceptibility to endotoxin shock PMID: 14576054 
F2rl1tm1Wrf F2rl1tm1Wrf/F2rl1tm1Wrf
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0003436 decreased susceptibility to induced arthritis PMID: 12511586 
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101910  MP:0005166 decreased susceptibility to injury PMID: 17640968 
F2rl1tm1Jkaw F2rl1tm1Jkaw/F2rl1tm1Jkaw
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0005616 decreased susceptibility to type IV hypersensitivity reaction PMID: 11859856 
F2rtm1Ajc|F2rl1tm1Cgh F2rtm1Ajc/F2rtm1Ajc,F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101802  MGI:101910  MP:0008762 embryonic lethality PMID: 16434493 
F2rtm1Ajc|F2rl1tm1Cgh|F2rl3tm1Cgh F2rtm1Ajc/F2rtm1Ajc,F2rl1tm1Cgh/F2rl1tm1Cgh,F2rl3tm1Cgh/F2rl3tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101802  MGI:101910  MGI:1298207  MP:0008762 embryonic lethality PMID: 16434493 
F2rtm1.1Cgh|F2rl1tm2Cgh|Tg(Tek-F2r)1Cgh F2rtm1.1Cgh/F2rtm1.1Cgh,F2rl1tm2Cgh/F2rl1tm2Cgh,Tg(Tek-F2r)1Cgh/0
involves: 129S4/SvJae * C57BL/6
MGI:101802  MGI:101910  MGI:4438038  MP:0000914 exencephaly PMID: 20152175 
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101910  MP:0002743 glomerulonephritis PMID: 17640968 
F2rl1tm1Cgh F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101910  MP:0005292 improved glucose tolerance PMID: 17992256 
F2r+|F2rtm2Cgh|F2rl1+|F2rl1tm2Cgh F2rtm2Cgh/F2r+,F2rl1tm2Cgh/F2rl1+
involves: 129S4/SvJae * C57BL/6
MGI:101802  MGI:101910  MP:0000928 incomplete cephalic closure PMID: 20152175 
F2rl1tm1Bpd|Tg(MMTV-PyVT)634Mul F2rl1tm1Bpd/F2rl1tm1Bpd,Tg(MMTV-PyVT)634Mul/0
B6.Cg-F2rl1 Tg(MMTV-PyVT)634Mul
MGI:101910  MGI:2679594  MP:0010383 increased adenoma incidence PMID: 18757438 
F2rl1tm1Wrf F2rl1tm1Wrf/F2rl1tm1Wrf
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0006060 increased cerebral infarction size PMID: 15647743 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0001846 increased inflammatory response PMID: 15458925 
F2rtm1Ajc|F2rl1tm1Cgh F2rtm1Ajc/F2rtm1Ajc,F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101802  MGI:101910  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 16434493 
F2rtm1Ajc|F2rl1tm1Cgh F2rtm1Ajc/F2rtm1Ajc,F2rl1tm1Cgh/F2rl1tm1Cgh
involves: 129S4/SvJae * C57BL/6
MGI:101802  MGI:101910  MP:0008735 increased susceptibility to endotoxin shock PMID: 16434493 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd * C57BL/6
MGI:101910  MP:0004761 increased susceptibility to induced pancreatitis PMID: 15458925 
F2rl1tm1Wrf F2rl1tm1Wrf/F2rl1tm1Wrf
involves: 129P2/OlaHsd
MGI:101910  MP:0001860 liver inflammation PMID: 16260585 
F2rl1tm1Bpd|Tg(MMTV-PyVT)634Mul F2rl1tm1Bpd/F2rl1tm1Bpd,Tg(MMTV-PyVT)634Mul/0
B6.Cg-F2rl1 Tg(MMTV-PyVT)634Mul
MGI:101910  MGI:2679594  MP:0001883 mammary adenocarcinoma PMID: 18757438 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd * C57BL/6J
MGI:101910  MP:0002081 perinatal lethality PMID: 9918574 
F2rl1tm1Bpd F2rl1tm1Bpd/F2rl1tm1Bpd
involves: 129P2/OlaHsd * C57BL/6J
MGI:101910  MP:0002082 postnatal lethality PMID: 9918574 
Biologically Significant Variants Click here for help
Type:  Splice variant/deletion
Species:  Human
Description:  6bp-deletion (−133GAGAAG−128) decreased PAR2 mRNA and PXR mRNA expression and led to down regulations of MDR1 and CYP3A4.
References:  38
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Subjects with SNP (c.621C>T) had higher serum IgE and eosinophil count, indicating a higher risk of atopy.
Nucleotide change:  c.621C>T
SNP accession: 
References:  30
General Comments
SARS-CoV-2/COVID-19
Experimental in vitro evidence, using affinity-purification mass spectrometry (AP-MS), indicates a protein-protein interaction between PAR2 and the SARS-CoV-2 Orf9c protein [17], although whether this interaction is realistic based on spatial distribution of the host and viral proteins within cells was not addressed in this study. Speculatively, PAR2 ligands such as AZ3451, GB110, or AZ8838 could be utilised to examine the effect of blocking the PAR2/Orf9c protein-protein interaction on SARS-CoV-2 pathobiology.

References

Show »

1. Al-Ani B, Saifeddine M, Kawabata A, Renaux B, Mokashi S, Hollenberg MD. (1999) Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands. J Pharmacol Exp Ther, 290 (2): 753-60. [PMID:10411588]

2. Amiable N, Martel-Pelletier J, Lussier B, Kwan Tat S, Pelletier JP, Boileau C. (2011) Proteinase-activated receptor-2 gene disruption limits the effect of osteoarthritis on cartilage in mice: a novel target in joint degradation. J Rheumatol, 38 (5): 911-20. [PMID:21285164]

3. Avet C, Sturino C, Grastilleur S, Gouill CL, Semache M, Gross F, Gendron L, Bennani Y, Mancini JA, Sayegh CE et al.. (2020) The PAR2 inhibitor I-287 selectively targets Gαq and Gα12/13 signaling and has anti-inflammatory effects. Commun Biol, 3 (1): 719. [PMID:33247181]

4. Badeanlou L, Furlan-Freguia C, Yang G, Ruf W, Samad F. (2011) Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation. Nat Med, 17 (11): 1490-7. [PMID:22019885]

5. Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP. (2010) Novel agonists and antagonists for human protease activated receptor 2. J Med Chem, 53 (20): 7428-40. [PMID:20873792]

6. Boitano S, Hoffman J, Flynn AN, Asiedu MN, Tillu DV, Zhang Z, Sherwood CL, Rivas CM, DeFea KA, Vagner J et al.. (2015) The novel PAR2 ligand C391 blocks multiple PAR2 signalling pathways in vitro and in vivo. Br J Pharmacol, 172 (18): 4535-4545. [PMID:26140338]

7. Bushell TJ, Cunningham MR, McIntosh KA, Moudio S, Plevin R. (2016) Protease-Activated Receptor 2: Are Common Functions in Glial and Immune Cells Linked to Inflammation-Related CNS Disorders?. Curr Drug Targets, 17 (16): 1861-1870. [PMID:26648078]

8. Busso N, Frasnelli M, Feifel R, Cenni B, Steinhoff M, Hamilton J, So A. (2007) Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum, 56 (1): 101-7. [PMID:17195212]

9. Cheng RKY, Fiez-Vandal C, Schlenker O, Edman K, Aggeler B, Brown DG, Brown GA, Cooke RM, Dumelin CE, Doré AS et al.. (2017) Structural insight into allosteric modulation of protease-activated receptor 2. Nature, 545 (7652): 112-115. [PMID:28445455]

10. Cottrell GS, Amadesi S, Pikios S, Camerer E, Willardsen JA, Murphy BR, Caughey GH, Wolters PJ, Coughlin SR, Peterson A et al.. (2007) Protease-activated receptor 2, dipeptidyl peptidase I, and proteases mediate Clostridium difficile toxin A enteritis. Gastroenterology, 132 (7): 2422-37. [PMID:17570216]

11. Crilly A, Palmer H, Nickdel MB, Dunning L, Lockhart JC, Plevin R, McInnes IB, Ferrell WR. (2012) Immunomodulatory role of proteinase-activated receptor-2. Ann Rheum Dis, 71 (9): 1559-66. [PMID:22563031]

12. Davidson CE, Asaduzzaman M, Arizmendi NG, Polley D, Wu Y, Gordon JR, Hollenberg MD, Cameron L, Vliagoftis H. (2013) Proteinase-activated receptor-2 activation participates in allergic sensitization to house dust mite allergens in a murine model. Clin Exp Allergy, 43 (11): 1274-85. [PMID:24152160]

13. de Boer JD, Van't Veer C, Stroo I, van der Meer AJ, de Vos AF, van der Zee JS, Roelofs JJ, van der Poll T. (2014) Protease-activated receptor-2 deficient mice have reduced house dust mite-evoked allergic lung inflammation. Innate Immun, 20 (6): 618-25. [PMID:24048772]

14. De Cunto G, Cardini S, Cirino G, Geppetti P, Lungarella G, Lucattelli M. (2011) Pulmonary hypertension in smoking mice over-expressing protease-activated receptor-2. Eur Respir J, 37 (4): 823-34. [PMID:20693251]

15. Gardell LR, Ma JN, Seitzberg JG, Knapp AE, Schiffer HH, Tabatabaei A, Davis CN, Owens M, Clemons B, Wong KK et al.. (2008) Identification and characterization of novel small-molecule protease-activated receptor 2 agonists. J Pharmacol Exp Ther, 327 (3): 799-808. [PMID:18768780]

16. Georgy SR, Pagel CN, Ghasem-Zadeh A, Zebaze RM, Pike RN, Sims NA, Mackie EJ. (2012) Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone, 50 (3): 704-12. [PMID:22173052]

17. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL et al.. (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583 (7816): 459-468. [PMID:32353859]

18. Hollenberg MD, Renaux B, Hyun E, Houle S, Vergnolle N, Saifeddine M, Ramachandran R. (2008) Derivatized 2-furoyl-LIGRLO-amide, a versatile and selective probe for proteinase-activated receptor 2: binding and visualization. J Pharmacol Exp Ther, 326 (2): 453-62. [PMID:18477767]

19. Holzhausen M, Spolidorio LC, Ellen RP, Jobin MC, Steinhoff M, Andrade-Gordon P, Vergnolle N. (2006) Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. Am J Pathol, 168 (4): 1189-99. [PMID:16565494]

20. Jiang Y, Yau MK, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP. (2018) A Potent Antagonist of Protease-Activated Receptor 2 That Inhibits Multiple Signaling Functions in Human Cancer Cells. J Pharmacol Exp Ther, 364 (2): 246-257. [PMID:29263243]

21. Jimenez-Vargas NN, Pattison LA, Zhao P, Lieu T, Latorre R, Jensen DD, Castro J, Aurelio L, Le GT, Flynn B et al.. (2018) Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc Natl Acad Sci USA, 115 (31): E7438-E7447. [PMID:30012612]

22. Jin G, Hayashi T, Kawagoe J, Takizawa T, Nagata T, Nagano I, Syoji M, Abe K. (2005) Deficiency of PAR-2 gene increases acute focal ischemic brain injury. J Cereb Blood Flow Metab, 25 (3): 302-13. [PMID:15647743]

23. Kanke T, Ishiwata H, Kabeya M, Saka M, Doi T, Hattori Y, Kawabata A, Plevin R. (2005) Binding of a highly potent protease-activated receptor-2 (PAR2) activating peptide, [3H]2-furoyl-LIGRL-NH2, to human PAR2. Br J Pharmacol, 145 (2): 255-63. [PMID:15765104]

24. Kawabata A, Matsunami M, Tsutsumi M, Ishiki T, Fukushima O, Sekiguchi F, Kawao N, Minami T, Kanke T, Saito N. (2006) Suppression of pancreatitis-related allodynia/hyperalgesia by proteinase-activated receptor-2 in mice. Br J Pharmacol, 148 (1): 54-60. [PMID:16520745]

25. Kawagoe J, Takizawa T, Matsumoto J, Tamiya M, Meek SE, Smith AJ, Hunter GD, Plevin R, Saito N, Kanke T et al.. (2002) Effect of protease-activated receptor-2 deficiency on allergic dermatitis in the mouse ear. Jpn J Pharmacol, 88 (1): 77-84. [PMID:11859856]

26. Kennedy AJ, Sundström L, Geschwindner S, Poon EKY, Jiang Y, Chen R, Cooke R, Johnstone S, Madin A, Lim J et al.. (2020) Protease-activated receptor-2 ligands reveal orthosteric and allosteric mechanisms of receptor inhibition. Commun Biol, 3 (1): 782. [PMID:33335291]

27. Khoufache K, LeBouder F, Morello E, Laurent F, Riffault S, Andrade-Gordon P, Boullier S, Rousset P, Vergnolle N, Riteau B. (2009) Protective role for protease-activated receptor-2 against influenza virus pathogenesis via an IFN-gamma-dependent pathway. J Immunol, 182 (12): 7795-802. [PMID:19494303]

28. Knight V, Tchongue J, Lourensz D, Tipping P, Sievert W. (2012) Protease-activated receptor 2 promotes experimental liver fibrosis in mice and activates human hepatic stellate cells. Hepatology, 55 (3): 879-87. [PMID:22095855]

29. Lam DK, Schmidt BL. (2010) Serine proteases and protease-activated receptor 2-dependent allodynia: a novel cancer pain pathway. Pain, 149 (2): 263-72. [PMID:20189717]

30. Lee JH, Kim KW, Gee HY, Lee J, Lee KH, Park HS, Kim SH, Kim SW, Kim MN, Kim KE et al.. (2011) A synonymous variation in protease-activated receptor-2 is associated with atopy in Korean children. J Allergy Clin Immunol, 128 (6): 1326-1334.e3. [PMID:21839502]

31. Lee MC, Huang SC. (2008) Proteinase-activated receptor-1 (PAR(1)) and PAR(2) but not PAR(4) mediate contraction in human and guinea-pig gallbladders. Neurogastroenterol Motil, 20 (4): 385-91. [PMID:18179608]

32. LeSarge JC, Thibeault P, Milne M, Ramachandran R, Luyt LG. (2019) High Affinity Fluorescent Probe for Proteinase-Activated Receptor 2 (PAR2). ACS Med Chem Lett, 10 (7): 1045-1050. [PMID:31312406]

33. LeSarge JC, Thibeault P, Yu L, Childs MD, Mirka VM, Qi Q, Fox MS, Kovacs MS, Ramachandran R, Luyt LG. (2023) Protease-activated receptor 2 (PAR2)-targeting peptide derivatives for positron emission tomography (PET) imaging. Eur J Med Chem, 246: 114989. [PMID:36527934]

34. Lewkowich IP, Day SB, Ledford JR, Zhou P, Dienger K, Wills-Karp M, Page K. (2011) Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation. Respir Res, 12: 122. [PMID:21936897]

35. Li M, Yang X, Zhang Y, Chen L, Lu H, Li X, Yin L, Zhi X. (2015) Activation of protease‑activated receptor‑2 is associated with increased expression of inflammatory factors in the adipose tissues of obese mice. Mol Med Rep, 12 (4): 6227-34. [PMID:26252901]

36. Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D, Foy D, Hafezi-Moghadam A, Ley K. (2000) Delayed onset of inflammation in protease-activated receptor-2-deficient mice. J Immunol, 165 (11): 6504-10. [PMID:11086091]

37. Liu S, Liu YP, Yue DM, Liu GJ. (2014) Protease-activated receptor 2 in dorsal root ganglion contributes to peripheral sensitization of bone cancer pain. Eur J Pain, 18 (3): 326-37. [PMID:23893658]

38. Liu Y, Ji W, Yin Y, Fan L, Zhang J, Yun H, Wang N, Li Q, Wei Z, Ouyang D et al.. (2009) The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions. Clin Chim Acta, 403 (1-2): 142-4. [PMID:19232333]

39. Matej R, Olejar T, Janouskova O, Holada K. (2012) Deletion of protease-activated receptor 2 prolongs survival of scrapie-inoculated mice. J Gen Virol, 93 (Pt 9): 2057-61. [PMID:22694901]

40. McGuire JJ, Saifeddine M, Triggle CR, Sun K, Hollenberg MD. (2004) 2-furoyl-LIGRLO-amide: a potent and selective proteinase-activated receptor 2 agonist. J Pharmacol Exp Ther, 309 (3): 1124-31. [PMID:14976230]

41. McGuire JJ, Van Vliet BN, Halfyard SJ. (2008) Blood pressures, heart rate and locomotor activity during salt loading and angiotensin II infusion in protease-activated receptor 2 (PAR2) knockout mice. BMC Physiol, 8: 20. [PMID:18939990]

42. Moussa L, Apostolopoulos J, Davenport P, Tchongue J, Tipping PG. (2007) Protease-activated receptor-2 augments experimental crescentic glomerulonephritis. Am J Pathol, 171 (3): 800-8. [PMID:17640968]

43. Noorbakhsh F, Tsutsui S, Vergnolle N, Boven LA, Shariat N, Vodjgani M, Warren KG, Andrade-Gordon P, Hollenberg MD, Power C. (2006) Proteinase-activated receptor 2 modulates neuroinflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Exp Med, 203 (2): 425-35. [PMID:16476770]

44. Olejar T, Vetvicka D, Zadinova M, Pouckova P, Kukal J, Jezek P, Matej R. (2014) Dual role of host Par2 in a murine model of spontaneous metastatic B16 melanoma. Anticancer Res, 34 (7): 3511-5. [PMID:24982362]

45. Page K, Ledford JR, Zhou P, Dienger K, Wills-Karp M. (2010) Mucosal sensitization to German cockroach involves protease-activated receptor-2. Respir Res, 11: 62. [PMID:20497568]

46. Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Hollenberg MD. (2011) Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem, 286 (28): 24638-48. [PMID:21576245]

47. Schaffner F, Versteeg HH, Schillert A, Yokota N, Petersen LC, Mueller BM, Ruf W. (2010) Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development. Blood, 116 (26): 6106-13. [PMID:20861457]

48. Seeliger S, Derian CK, Vergnolle N, Bunnett NW, Nawroth R, Schmelz M, Von Der Weid PY, Buddenkotte J, Sunderkötter C, Metze D et al.. (2003) Proinflammatory role of proteinase-activated receptor-2 in humans and mice during cutaneous inflammation in vivo. FASEB J, 17 (13): 1871-85. [PMID:14519665]

49. Seitzberg JG, Knapp AE, Lund BW, Mandrup Bertozzi S, Currier EA, Ma JN, Sherbukhin V, Burstein ES, Olsson R. (2008) Discovery of potent and selective small-molecule PAR-2 agonists. J Med Chem, 51 (18): 5490-3. [PMID:18720984]

50. Singh VP, Bhagat L, Navina S, Sharif R, Dawra RK, Saluja AK. (2007) Protease-activated receptor-2 protects against pancreatitis by stimulating exocrine secretion. Gut, 56 (7): 958-64. [PMID:17114298]

51. Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP. (2012) Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol, 165 (5): 1413-23. [PMID:21806599]

52. Takizawa T, Tamiya M, Hara T, Matsumoto J, Saito N, Kanke T, Kawagoe J, Hattori Y. (2005) Abrogation of bronchial eosinophilic inflammation and attenuated eotaxin content in protease-activated receptor 2-deficient mice. J Pharmacol Sci, 98 (1): 99-102. [PMID:15879675]

53. Uusitalo-Jarvinen H, Kurokawa T, Mueller BM, Andrade-Gordon P, Friedlander M, Ruf W. (2007) Role of protease activated receptor 1 and 2 signaling in hypoxia-induced angiogenesis. Arterioscler Thromb Vasc Biol, 27 (6): 1456-62. [PMID:17363687]

54. Versteeg HH, Schaffner F, Kerver M, Ellies LG, Andrade-Gordon P, Mueller BM, Ruf W. (2008) Protease-activated receptor (PAR) 2, but not PAR1, signaling promotes the development of mammary adenocarcinoma in polyoma middle T mice. Cancer Res, 68 (17): 7219-27. [PMID:18757438]

55. Weithauser A, Bobbert P, Antoniak S, Böhm A, Rauch BH, Klingel K, Savvatis K, Kroemer HK, Tschope C, Stroux A et al.. (2013) Protease-activated receptor-2 regulates the innate immune response to viral infection in a coxsackievirus B3-induced myocarditis. J Am Coll Cardiol, 62 (19): 1737-45. [PMID:23871888]

56. Wong DM, Tam V, Lam R, Walsh KA, Tatarczuch L, Pagel CN, Reynolds EC, O'Brien-Simpson NM, Mackie EJ, Pike RN. (2010) Protease-activated receptor 2 has pivotal roles in cellular mechanisms involved in experimental periodontitis. Infect Immun, 78 (2): 629-38. [PMID:19933835]

57. Xue M, Chan YK, Shen K, Dervish S, March L, Sambrook PN, Jackson CJ. (2012) Protease-activated receptor 2, rather than protease-activated receptor 1, contributes to the aggressive properties of synovial fibroblasts in rheumatoid arthritis. Arthritis Rheum, 64 (1): 88-98. [PMID:21905006]

58. Yau MK, Suen JY, Xu W, Lim J, Liu L, Adams MN, He Y, Hooper JD, Reid RC, Fairlie DP. (2016) Potent Small Agonists of Protease Activated Receptor 2. ACS Med Chem Lett, 7 (1): 105-10. [PMID:26819675]

Contributors

Show »

How to cite this page