Top ▲

PKR2

Click here for help

Target id: 336

Nomenclature: PKR2

Family: Prokineticin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 384 20p12.3 PROKR2 prokineticin receptor 2 24,46
Mouse 7 381 2 F2 Prokr2 prokineticin receptor 2 11
Rat 7 383 3q36 Prokr2 prokineticin receptor 2 27,33
Previous and Unofficial Names Click here for help
GPR73b [24] | VEGFR-2 [23] | GPRg2 [46] | GPR73a [24] | I5E [27]
Database Links Click here for help
Specialist databases
GPCRdb pkr2_human (Hs), pkr2_mouse (Mm), pkr2_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Interacting Proteins
Name Effect References
SNAP associated protein (SNAPIN) Interacts with the C-terminal region of PKR2 47
Trypanosoma cruzi Tc-85 surface glycoprotein The LamG domain of T. cruzi adhesion molecule Tc-85 interacts with PKR2 and induces ERK and NFAT phosphorylation 20
Natural/Endogenous Ligands Click here for help
prokineticin-2β {Sp: Human}
prokineticin-1 {Sp: Human}
prokineticin-2 {Sp: Human}
prokineticin-1 {Sp: Mouse}
prokineticin-2 {Sp: Mouse, Rat}
prokineticin-1 {Sp: Rat}
Comments: Prokineticin-2 is the higher potency endogenous agonist
Potency order of endogenous ligands (Human)
prokineticin-2 (PROK2, Q9HC23) > prokineticin-1 (PROK1, Q9HC23) > prokineticin-2β (PROK2, Q9HC23)  [10,24,27,46]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Reference
MIT1 Peptide Click here for species-specific activity table Hs Full agonist 9.2 pIC50 27
pIC50 9.2 [27]
[125I]BH-MIT1 Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 9.2 pIC50 27
pIC50 9.2 (IC50 6.7x10-10 M) [27]
prokineticin-2 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.1 – 8.2 pIC50 10,27
pIC50 8.1 – 8.2 [10,27]
prokineticin-1 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.1 – 7.3 pIC50 10,27
pIC50 7.1 – 7.3 [10,27]
prokineticin-2β {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist <6.0 pIC50 10
pIC50 <6.0 (IC50 >1x10-6 M) [10]
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
triazine compound PC1 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.8 pKi 3
pKi 5.8 (Ki 1.61x10-6 M) [3]
PKR-A Small molecule or natural product Hs Antagonist 7.3 – 7.4 pIC50 12
pIC50 7.3 – 7.4 (IC50 5.27x10-8 – 4.35x10-8 M) [12]
triazine compound PC10 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 5.9 pIC50 19
pIC50 5.9 (IC50 1.2x10-6 M) [19]
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Comments:  Coexpression of Gqi5 with the PKR2 receptor increases the PK stimulated Ca2+ response in HEK 293 cells transfected with the human PKR2 receptor [10].
References:  10,30
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family
Gi/Go family
Adenylyl cyclase stimulation
Other - See Comments
Comments:  Pertussis toxin (PTX) inhibits PK1-induced mitogen-activated protein kinase signaling suggesting that PKR2 couples to Gi/Go proteins [25].
References:  10,25
Tissue Distribution Click here for help
Capillary endothelial cells of the testis interstitium.
Species:  Human
Technique:  in situ hybridisation.
References:  22
CNS: amygdala, hippocampus, frontal lobe, cerebral cortex, fetal brain.
Species:  Human
Technique:  RT-PCR.
References:  46
Endometrium.
Species:  Human
Technique:  RT-PCR.
References:  5
Testis.
Species:  Human
Technique:  RT-PCR.
References:  46
Endocrine tissues: ovary, thyroid gland, salivary gland, pituitary gland.
Species:  Human
Technique:  RT-PCR.
References:  24
Brain >> mammary gland, spleen.
Species:  Human
Technique:  RT-PCR.
References:  10
Brain, testis, small intestine.
Species:  Human
Technique:  RT-PCR.
References:  24
Immune cells: CD19 >> CD14 > CD4, CD8, Th1, Th2.
Species:  Human
Technique:  Q-PCR.
References:  16
Macrophages.
Species:  Mouse
Technique:  RT-PCR.
References:  26
Brain: suprachiasmatic nucleus (SCN), paraventricular thalamic nucleus (PVT), paraventricular hypothalamic nucleus (PVN), dorsal medial hypothalamic nucleus (DMH), paratenial thalamic nuclei (PT), paracentral thalamic nucleus (PC), lateral habenular nucleus (LHb), lateral septal nucleus (LS), lateral globus pallidus (LGP), amygdala.
Species:  Mouse
Technique:  in situ hybridisation.
References:  11
Capillary endothelial cells of the testis interstitium.
Species:  Mouse
Technique:  in situ hybridisation.
References:  22
Brain, prostate, liver, testis, kidney.
Species:  Mouse
Technique:  Taqman analysis.
References:  21
Lymph node >> bone marrow.
Species:  Mouse
Technique:  Q-PCR.
References:  16
Testis > cerebrum, cerebellum, ovary, pituitary, lung, spleen, uterus.
Species:  Rat
Technique:  RT-PCR.
References:  27
Digestive tract: ileocecum.
Species:  Rat
Technique:  RT-PCR.
References:  24
CNS: dorsal root ganglia > dorsal quadrants of spinal cord.
Species:  Rat
Technique:  RT-PCR.
References:  33
Brain: piriform cortex, paraventricular thalamic nucleus (PVT), paratenial nucleus (PT), suprachiasmatic nucleus (SCN), hypothalamic paraventricular (PVH) and dorsomedial (DMH) nuclei, arcuate nucleus (ARC), subfornical organ (SFO), amygdala, hippocampus, lateral habenular nucleus and lateral globus pallidus.
Species:  Rat
Technique:  in situ hybridisation.
References:  32
Olfactory bulb: ependyma and subependymal layers of the olfactory ventricle, subventricular zone, rostral migratory stream.
Dentate gyrus of the hippocampus.
Species:  Rat
Technique: 
References:  34
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of the activity of p44/p42 MAPK in HEK 293 cells transfected with the PKR2 receptor.
Species:  Human
Tissue:  HEK 293.
Response measured:  Phosphorylation of p44/p42 MAPK.
References:  24
Measurement of intracellular Ca2+ in CHO cells transfected with the rat PKR2 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Increase in [Ca2+]i.
References:  27
Measurement of intracellular [Ca2+] in CHO cells transfected with the human PKR2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Mobilisation of Ca2+.
References:  6,16,24,46
Measurement of IP levels in COS-7 cells transfected with the human PKR2 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in IP levels.
References:  24
Measurement of Ca2+ and cAMP levels in HEK 293 cells transfected with the human PKR2 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Mobilisation of Ca2+ and stimulation of cAMP accumulation.
References:  10
Physiological Functions Click here for help
Regulation of behavioural circadian rhythm.
Species:  Rat
Tissue:  In vivo (suprachiasmatic nucleus).
References:  11
Proliferation, survival, and migration of adrenal cortical capillary endothelial (ACE) cells.
Species:  Mouse
Tissue:  Testis.
References:  22
Inhibition of food intake.
Species:  Rat
Tissue:  In vivo.
References:  32
Stimulation of water intake.
Species:  Rat
Tissue:  In vivo.
References:  32
Excitation (potential mechanism for circadian regulation).
Species:  Rat
Tissue:  subfornical organ neurons of the brain.
References:  14
Invasion of colon cancer cell lines.
Species:  Human
Tissue:  Colon cancer cells
References:  50
Increase of the activity of acid-sensing ion channels.
Species:  Rat
Tissue:  Dorsal root ganglion
References:  39
Increase of the spontaneous firing rate and down-regulation of the function of GABAA receptor signaling.
Species:  Rat
Tissue:  Suprachiasmatic nucleus, trigeminal ganglion neurons
References:  41,52
Increase in the formation of caveolin clusters and vesicle trafficking in endothelial cells.
Species:  Mouse
Tissue:  Coronary endothelial cells
References:  18
Migration of neuroblasts.
Species:  Mouse
Tissue:  Subventricular zone (SVZ)
References:  38
Depolarization of hypothalamic paraventricular nucleus magnocellular and parvocellular neurons
Species:  Mouse
Tissue:  Brain
References:  53
Physiological Consequences of Altering Gene Expression Click here for help
Null mutation of Prokr2 disrupts circadian coordination of the activity cycle and thermoregulation.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts
References:  37
Prokr2 deficient mice display abnormal development of the olfactory bulb and reproductive system, with similarities to the clinical features of Kallmann syndrome.
Species:  Mouse
Tissue:  in vivo
Technique:  Gene knockouts
References:  28
Prokr2 deficient mice display vascular dysmorphology of the fetal testes, with similarities to the clinical features of Kallmann syndrome.
Species:  Mouse
Tissue:  Testes
Technique:  Gene knockouts
References:  49
Prokr2 deficient mice present defective neuronal progenitor migration and differentiation, with similarities to the clinical features of Kallmann syndrome.
Species:  Mouse
Tissue:  Olfactory bulb, subventricular zone (SVZ)
Technique:  Gene knockouts
References:  36
Physiological Consequences of Altering Gene Expression Comments
In zebrafish knock-down of the PKR2 orthologue provided a model that has been used to uncover the complex regulatory role that this receptor plays in the hypothalamus-pituitary-gonadal axis [4].
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0003651 abnormal axon outgrowth PMID: 16537498 
Prokr2tm1Brd Prokr2tm1Brd/Prokr2tm1Brd
involves: 129S7/SvEvBrd * C57BL/6
MGI:2181363  MP:0001777 abnormal body temperature regulation PMID: 17202262 
Prokr2tm1Brd Prokr2tm1Brd/Prokr2tm1Brd
involves: 129S7/SvEvBrd * C57BL/6
MGI:2181363  MP:0002561 abnormal circadian phase PMID: 17202262 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0001119 abnormal female reproductive system morphology PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0005645 abnormal hypothalamus physiology PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0001145 abnormal male reproductive system morphology PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0000627 abnormal mammary gland morphology PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0002882 abnormal neuron morphology PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0002739 abnormal olfactory bulb development PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0000819 abnormal olfactory bulb morphology PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0002216 abnormal seminiferous tubule morphology PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0001134 absent corpus luteum PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0008261 arrest of male meiosis PMID: 16537498 
Prokr2tm1Brd Prokr2tm1Brd/Prokr2tm1Brd
involves: 129S7/SvEvBrd * C57BL/6
MGI:2181363  MP:0002560 arrhythmic circadian persistence PMID: 17202262 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0005159 azoospermia PMID: 16537498 
Prokr2tm1Brd Prokr2tm1Brd/Prokr2tm1Brd
involves: 129S7/SvEvBrd * C57BL/6
MGI:2181363  MP:0005534 decreased body temperature PMID: 17202262 
Prokr2tm1Brd Prokr2tm1Brd/Prokr2tm1Brd
B6.129S7-Prokr2
MGI:2181363  MP:0001262 decreased body weight PMID: 17202262 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0002780 decreased circulating testosterone level PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0005130 decreased follicle stimulating hormone level PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0002682 decreased mature ovarian follicle number PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0004856 decreased ovary weight PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0004852 decreased testis weight PMID: 16537498 
Prokr2tm1Brd Prokr2tm1Brd/Prokr2tm1Brd
involves: 129S7/SvEvBrd * C57BL/6
MGI:2181363  MP:0001402 hypoactivity PMID: 17202262 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0005536 Leydig cell hypoplasia PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0002058 neonatal lethality PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0004833 ovary atrophy PMID: 16537498 
Prokr2tm1Brd Prokr2tm1Brd/Prokr2tm1Brd
B6.129S7-Prokr2
MGI:2181363  MP:0002082 postnatal lethality PMID: 17202262 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0002741 small olfactory bulb PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0001153 small seminiferous tubules PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0003205 testicular atrophy PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0004894 uterus atrophy PMID: 16537498 
Prokr2tm1Api Prokr2tm1Api/Prokr2tm1Api
involves: C57BL/6 * CBA
MGI:2181363  MP:0004895 vagina atrophy PMID: 16537498 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Anosmia, isolated congenital; ANIC
Synonyms: Congenital anosmia [Disease Ontology: DOID:0050333]
Disease Ontology: DOID:0050333
OMIM: 107200
Orphanet: ORPHA88620
References:  31
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R85C 31
Missense Human R85H 31
Missense Human P290S 31
Disease:  Hirschsprung disease
OMIM: 142623
Orphanet: ORPHA388
References:  43
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human G68S 43
Missense Human R85C 43
Missense Human R85H 43
Missense Human P290S 43
Missense Human V297I 43
Disease:  Hypogonadotropic hypogonadism 3 with or without anosmia; HH3
Synonyms: Kallmann syndrome [Orphanet: ORPHA478] [Disease Ontology: DOID:3614]
Disease Ontology: DOID:3614
OMIM: 244200
Orphanet: ORPHA478
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human A51T No functional consequence detected
Missense Human R80C No functional consequence detected 1-2
Missense Human R85C Substitution results in a mild G protein-coupling defect 1,30
Missense Human R85H Substitution results in a mild G protein-coupling defect 1,15,30
Missense Human R85L Substitution results in a cell surface-targeting defect 44
Missense Human Y113H Substitution results in a cell surface-targeting defect 13
Missense Human V115M Substitution results in a cell surface-targeting defect 13
Missense Human R117W Substitution results in a cell surface-targeting defect
Missense Human R164Q Substitution results in a mild G protein-coupling defect 13,15,30
Missense Human L173R Substitution results in a cell surface-targeting defect 2,7,13,15,30
Missense Human W178S Substitution results in a cell surface-targeting defect 15,30
Missense Human S188L Substitution results in a cell surface-targeting defect
Missense Human Q210R Substitution affects ligand binding 15,30
Missense Human G234D Substitution results in a cell surface-targeting defec 51
Missense Human W251L Substitution results in a cell surface-targeting defect 44
Missense Human R268C No functional consequence detected 2,30
Missense Human V274D Substitution results in a cell surface-targeting defect 45
Missense Human P290S Substitution results in a cell surface-targeting defect 15,30
Missense Human M323I No functional consequence detected 15,30
Missense Human V331M Substitution results in a mild G protein-coupling defect 13,15,30
Missense Human R357W No functional consequence detected 13
Nonsense Human Y140X mRNA decay or protein truncation 2
Disease:  Hypopituitarism with pituitary stalk interruption
References:  29,42
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human A51T 29,42
Missense Human R85L 29
Missense Human R85H 42
Missense Human L173R 29,42
Missense Human R268C 29
Missense Human G371R 29
Disease:  Hypothalamic amenorrhea
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R85H 8
Missense Human L173R 8
Disease:  Idiopathic hypogonadotropic hypogonadism
Role: 
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human V317L 17
Disease:  Normosmic congenital hypogonadotropic hypogonadism
Orphanet: ORPHA432
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R85C 13
Missense Human W178S 13
Missense Human S188L 13
Missense Human S202G 9
Missense Human R248Q 13
Missense Human R268C 2
Disease:  Septo-optic dysplasia
OMIM: 182230
Orphanet: ORPHA3157
References:  29,40
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human A51T 29
Missense Human R85G 40
Missense Human R173R 29
Missense Human R268C 29,40
Missense Human G371R 29
Clinically-Relevant Mutations and Pathophysiology Comments
Mutations found in the homozygous state: Kallmann syndrome (R85C, R85H, Y140X, R164Q, L173R, V274D, P290S, G234D, R268C). For other possible variants of PKR2 due to single nucleotide polymorphism (SNP) see reference [48] and the Exome Variant Server Data Browser.
Biologically Significant Variants Click here for help
Type:  Missense mutation
Species:  Human
Description:  V331M substitution results in a mild G protein-coupling defect and is associated with Kallmann syndrome and is reported to confer protective roles in early pregnancy.
Amino acid change:  V331M
SNP accession: 
References:  13,15,30,48
Biologically Significant Variant Comments
In most cases, only one allele is affected by the mutation. In heterozygotes the two main clinical features of Kallmann syndrome may be incomplete. Several phenotypes are possible for individuals harboring only one mutant allele:
(1) no symptoms, with normal olfaction and complete pubertal development
(2) congenital isolated (idiopathic) hypogonadotropic hypogonadism (IHH) but normal olfaction
(3) anosmia/hyposmia but normal pubertal development and gonadal function
(4) the two cardinal clinical Kallmann syndrome signs, anosmia and IHH.
These phenotypic dissociations can be seen in family members with the same PROKR2 mutations. By contrast, patients with two mutant alleles almost always have the cardinal signs of Kallmann syndrome.

Other mutations in PROKR2 associated with cancer [35] (*, stop codon; fs, frameshift)
carcinoma:
lung: D38N, R47W, K53N, K83N, D99N, W121*, I174N, A175S, P213H, E231D
ovary: R85C, L95P, R298C, R353H
breast: S23F, G293S, M341I
liver L95P, I184fs*56
rectum C242*, R368I
larynx D112Y, C279S
pharynx R268G
prostate Y220*
kidney: G124C
endometrium: V115M
colon: A322T
melanoma: E110K, R298C
neuroblastoma: F109L
glioma: M165I
others:
pancreas: A77T, V331M

References

Show »

1. Abreu AP, Noel SD, Xu S, Carroll RS, Latronico AC, Kaiser UB. (2012) Evidence of the importance of the first intracellular loop of prokineticin receptor 2 in receptor function. Mol Endocrinol, 26 (8): 1417-27. [PMID:22745195]

2. Abreu AP, Trarbach EB, de Castro M, Frade Costa EM, Versiani B, Matias Baptista MT, Garmes HM, Mendonca BB, Latronico AC. (2008) Loss-of-function mutations in the genes encoding prokineticin-2 or prokineticin receptor-2 cause autosomal recessive Kallmann syndrome. J Clin Endocrinol Metab, 93 (10): 4113-8. [PMID:18682503]

3. Balboni G, Lazzari I, Trapella C, Negri L, Lattanzi R, Giannini E, Nicotra A, Melchiorri P, Visentin S, Nuccio CD et al.. (2008) Triazine compounds as antagonists at Bv8-prokineticin receptors. J Med Chem, 51 (23): 7635-9. [PMID:19006379]

4. Bassi I, Luzzani F, Marelli F, Vezzoli V, Cotellessa L, Prober DA, Persani L, Gothilf Y, Bonomi M. (2020) Knocking-down of the Prokineticin receptor 2 affects reveals its complex role in the regulation of the hypothalamus-pituitary-gonadal axis in the zebrafish model. Sci Rep, 10 (1): 7632. [PMID:32376893]

5. Battersby S, Critchley HO, Morgan K, Millar RP, Jabbour HN. (2004) Expression and regulation of the prokineticins (endocrine gland-derived vascular endothelial growth factor and Bv8) and their receptors in the human endometrium across the menstrual cycle. J Clin Endocrinol Metab, 89 (5): 2463-9. [PMID:15126578]

6. Bullock CM, Li JD, Zhou QY. (2004) Structural determinants required for the bioactivities of prokineticins and identification of prokineticin receptor antagonists. Mol Pharmacol, 65 (3): 582-8. [PMID:14978236]

7. Canto P, Munguía P, Söderlund D, Castro JJ, Méndez JP. (2009) Genetic analysis in patients with Kallmann syndrome: coexistence of mutations in prokineticin receptor 2 and KAL1. J Androl, 30 (1): 41-5. [PMID:18723471]

8. Caronia LM, Martin C, Welt CK, Sykiotis GP, Quinton R, Thambundit A, Avbelj M, Dhruvakumar S, Plummer L, Hughes VA et al.. (2011) A genetic basis for functional hypothalamic amenorrhea. N Engl J Med, 364 (3): 215-25. [PMID:21247312]

9. Chan YM, de Guillebon A, Lang-Muritano M, Plummer L, Cerrato F, Tsiaras S, Gaspert A, Lavoie HB, Wu CH, Crowley Jr WF et al.. (2009) GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA, 106 (28): 11703-8. [PMID:19567835]

10. Chen J, Kuei C, Sutton S, Wilson S, Yu J, Kamme F, Mazur C, Lovenberg T, Liu C. (2005) Identification and pharmacological characterization of prokineticin 2 beta as a selective ligand for prokineticin receptor 1. Mol Pharmacol, 67 (6): 2070-6. [PMID:15772293]

11. Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY. (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature, 417: 405-410. [PMID:12024206]

12. Cheng MY, Lee AG, Culbertson C, Sun G, Talati RK, Manley NC, Li X, Zhao H, Lyons DM, Zhou QY et al.. (2012) Prokineticin 2 is an endangering mediator of cerebral ischemic injury. Proc Natl Acad Sci USA, 109 (14): 5475-80. [PMID:22431614]

13. Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ et al.. (2008) Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab, 93 (9): 3551-9. [PMID:18559922]

14. Cottrell GT, Zhou QY, Ferguson AV. (2004) Prokineticin 2 modulates the excitability of subfornical organ neurons. J Neurosci, 24 (10): 2375-9. [PMID:15014112]

15. Dodé C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler ML, Lespinasse J, Lienhardt-Roussie A, Mathieu M, Moerman A et al.. (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet, 2 (10): e175. [PMID:17054399]

16. Dorsch M, Qiu Y, Soler D, Frank N, Duong T, Goodearl A, O'Neil S, Lora J, Fraser CC. (2005) PK1/EG-VEGF induces monocyte differentiation and activation. J Leukoc Biol, 78 (2): 426-34. [PMID:15908459]

17. Dwyer AA, Hayes FJ, Plummer L, Pitteloud N, Crowley Jr WF. (2010) The long-term clinical follow-up and natural history of men with adult-onset idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab, 95 (9): 4235-43. [PMID:20591981]

18. Guilini C, Urayama K, Turkeri G, Dedeoglu DB, Kurose H, Messaddeq N, Nebigil CG. (2010) Divergent roles of prokineticin receptors in the endothelial cells: angiogenesis and fenestration. Am J Physiol Heart Circ Physiol, 298 (3): H844-52. [PMID:20023120]

19. Jacobson O, Weiss ID, Niu G, Balboni G, Congiu C, Onnis V, Kiesewetter DO, Lattanzi R, Salvadori S, Chen X. (2011) Prokineticin receptor 1 antagonist PC-10 as a biomarker for imaging inflammatory pain. J Nucl Med, 52 (4): 600-7. [PMID:21421710]

20. Lattanzi R, Maftei D, Fullone MR, Miele R. (2021) Trypanosoma cruzi trans-sialidase induces STAT3 and ERK activation by prokineticin receptor 2 binding. Cell Biochem Funct, 39 (2): 326-334. [PMID:32892338]

21. LeCouter J, Lin R, Frantz G, Zhang Z, Hillan K, Ferrara N. (2003) Mouse endocrine gland-derived vascular endothelial growth factor: a distinct expression pattern from its human ortholog suggests different roles as a regulator of organ-specific angiogenesis. Endocrinology, 144 (6): 2606-16. [PMID:12746324]

22. LeCouter J, Lin R, Tejada M, Frantz G, Peale F, Hillan KJ, Ferrara N. (2003) The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: Localization of Bv8 receptors to endothelial cells. Proc Natl Acad Sci USA, 100 (5): 2685-90. [PMID:12604792]

23. LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N. (2004) Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA, 101 (48): 16813-8. [PMID:15548611]

24. Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H, Zhou QY. (2002) Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J Biol Chem, 277 (22): 19276-80. [PMID:11886876]

25. Lin R, LeCouter J, Kowalski J, Ferrara N. (2002) Characterization of endocrine gland-derived vascular endothelial growth factor signaling in adrenal cortex capillary endothelial cells. J Biol Chem, 277 (10): 8724-9. [PMID:11751915]

26. Martucci C, Franchi S, Giannini E, Tian H, Melchiorri P, Negri L, Sacerdote P. (2006) Bv8, the amphibian homologue of the mammalian prokineticins, induces a proinflammatory phenotype of mouse macrophages. Br J Pharmacol, 147 (2): 225-34. [PMID:16299550]

27. Masuda Y, Takatsu Y, Terao Y, Kumano S, Ishibashi Y, Suenaga M, Abe M, Fukusumi S, Watanabe T, Shintani Y et al.. (2002) Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem Biophys Res Commun, 293 (1): 396-402. [PMID:12054613]

28. Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M et al.. (2006) Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci USA, 103 (11): 4140-5. [PMID:16537498]

29. McCabe MJ, Gaston-Massuet C, Gregory LC, Alatzoglou KS, Tziaferi V, Sbai O, Rondard P, Masumoto KH, Nagano M, Shigeyoshi Y et al.. (2013) Variations in PROKR2, but not PROK2, are associated with hypopituitarism and septo-optic dysplasia. J Clin Endocrinol Metab, 98 (3): E547-57. [PMID:23386640]

30. Monnier C, Dodé C, Fabre L, Teixeira L, Labesse G, Pin JP, Hardelin JP, Rondard P. (2009) PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity. Hum Mol Genet, 18 (1): 75-81. [PMID:18826963]

31. Moya-Plana A, Villanueva C, Laccourreye O, Bonfils P, de Roux N. (2013) PROKR2 and PROK2 mutations cause isolated congenital anosmia without gonadotropic deficiency. Eur J Endocrinol, 168 (1): 31-7. [PMID:23082007]

32. Negri L, Lattanzi R, Giannini E, De Felice M, Colucci A, Melchiorri P. (2004) Bv8, the amphibian homologue of the mammalian prokineticins, modulates ingestive behaviour in rats. Br J Pharmacol, 142 (1): 181-91. [PMID:15066905]

33. Negri L, Lattanzi R, Giannini E, Metere A, Colucci M, Barra D, Kreil G, Melchiorri P. (2002) Nociceptive sensitization by the secretory protein Bv8. Br J Pharmacol, 137 (8): 1147-54. [PMID:12466223]

34. Ng KL, Li JD, Cheng MY, Leslie FM, Lee AG, Zhou QY. (2005) Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science, 308 (5730): 1923-7. [PMID:15976302]

35. O'Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer, 13 (6): 412-24. [PMID:23640210]

36. Prosser HM, Bradley A, Caldwell MA. (2007) Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiation. Eur J Neurosci, 26 (12): 3339-44. [PMID:18052978]

37. Prosser HM, Bradley A, Chesham JE, Ebling FJ, Hastings MH, Maywood ES. (2007) Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc Natl Acad Sci USA, 104 (2): 648-53. [PMID:17202262]

38. Puverel S, Nakatani H, Parras C, Soussi-Yanicostas N. (2009) Prokineticin receptor 2 expression identifies migrating neuroblasts and their subventricular zone transient-amplifying progenitors in adult mice. J Comp Neurol, 512 (2): 232-42. [PMID:19003791]

39. Qiu CY, Liu YQ, Qiu F, Wu J, Zhou QY, Hu WP. (2012) Prokineticin 2 potentiates acid-sensing ion channel activity in rat dorsal root ganglion neurons. J Neuroinflammation, 9: 108. [PMID:22642848]

40. Raivio T, Avbelj M, McCabe MJ, Romero CJ, Dwyer AA, Tommiska J, Sykiotis GP, Gregory LC, Diaczok D, Tziaferi V et al.. (2012) Genetic overlap in Kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J Clin Endocrinol Metab, 97 (4): E694-9. [PMID:22319038]

41. Ren P, Zhang H, Qiu F, Liu YQ, Gu H, O'Dowd DK, Zhou QY, Hu WP. (2011) Prokineticin 2 regulates the electrical activity of rat suprachiasmatic nuclei neurons. PLoS ONE, 6 (6): e20263. [PMID:21687716]

42. Reynaud R, Jayakody SA, Monnier C, Saveanu A, Bouligand J, Guedj AM, Simonin G, Lecomte P, Barlier A, Rondard P et al.. (2012) PROKR2 variants in multiple hypopituitarism with pituitary stalk interruption. J Clin Endocrinol Metab, 97 (6): E1068-73. [PMID:22466334]

43. Ruiz-Ferrer M, Torroglosa A, Núñez-Torres R, de Agustín JC, Antiñolo G, Borrego S. (2011) Expression of PROKR1 and PROKR2 in human enteric neural precursor cells and identification of sequence variants suggest a role in HSCR. PLoS ONE, 6 (8): e23475. [PMID:21858136]

44. Sarfati J, Guiochon-Mantel A, Rondard P, Arnulf I, Garcia-Piñero A, Wolczynski S, Brailly-Tabard S, Bidet M, Ramos-Arroyo M, Mathieu M et al.. (2010) A comparative phenotypic study of kallmann syndrome patients carrying monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J Clin Endocrinol Metab, 95 (2): 659-69. [PMID:20022991]

45. Sinisi AA, Asci R, Bellastella G, Maione L, Esposito D, Elefante A, De Bellis A, Bellastella A, Iolascon A. (2008) Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia: case report. Hum Reprod, 23 (10): 2380-4. [PMID:18596028]

46. Soga T, Matsumoto Si, Oda T, Saito T, Hiyama H, Takasaki J, Kamohara M, Ohishi T, Matsushime H, Furuichi K. (2002) Molecular cloning and characterization of prokineticin receptors. Biochim Biophys Acta, 1579 (2-3): 173-9. [PMID:12427552]

47. Song J, Li J, Liu HD, Liu W, Feng Y, Zhou XT, Li JD. (2016) Snapin interacts with G-protein coupled receptor PKR2. Biochem Biophys Res Commun, 469 (3): 501-6. [PMID:26687946]

48. Su MT, Lin SH, Chen YC, Wu LW, Kuo PL. (2013) Prokineticin receptor variants (PKR1-I379V and PKR2-V331M) are protective genotypes in human early pregnancy. Reproduction, 146 (1): 63-73. [PMID:23687280]

49. Svingen T, McClelland KS, Masumoto K, Sujino M, Nagano M, Shigeyoshi Y, Koopman P. (2011) Prokr2-deficient mice display vascular dysmorphology of the fetal testes: potential implications for Kallmann syndrome aetiology. Sex Dev, 5 (6): 294-303. [PMID:22223120]

50. Tabata S, Goi T, Nakazawa T, Kimura Y, Katayama K, Yamaguchi A. (2013) Endocrine gland-derived vascular endothelial growth factor strengthens cell invasion ability via prokineticin receptor 2 in colon cancer cell lines. Oncol Rep, 29 (2): 459-63. [PMID:23135359]

51. Tommiska J, Toppari J, Vaaralahti K, Känsäkoski J, Laitinen EM, Noisa P, Kinnala A, Niinikoski H, Raivio T. (2013) PROKR2 mutations in autosomal recessive Kallmann syndrome. Fertil Steril, 99 (3): 815-8. [PMID:23200691]

52. Xiong YC, Li XM, Wang XJ, Liu YQ, Qiu F, Wu D, Gan YB, Wang BH, Hu WP. (2010) Prokineticin 2 suppresses GABA-activated current in rat primary sensory neurons. Neuropharmacology, 59 (7-8): 589-94. [PMID:20800074]

53. Yuill EA, Hoyda TD, Ferri CC, Zhou QY, Ferguson AV. (2007) Prokineticin 2 depolarizes paraventricular nucleus magnocellular and parvocellular neurons. Eur J Neurosci, 25 (2): 425-34. [PMID:17284183]

Contributors

Show »

How to cite this page