Top ▲

PKR1

Click here for help

Target id: 335

Nomenclature: PKR1

Family: Prokineticin receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 393 2p13.3 PROKR1 prokineticin receptor 1 23,30,34
Mouse 7 393 6 D1 Prokr1 prokineticin receptor 1 30
Rat 7 393 4q34 Prokr1 prokineticin receptor 1 25,27
Previous and Unofficial Names Click here for help
GPR73a [23] | VEGFR-1 [22] | ZAQ [25] | GPR73 [23,34] | G-protein coupled receptor ZAQ [25] | G protein-coupled receptor 73
Database Links Click here for help
Specialist databases
GPCRDB pkr1_human (Hs), pkr1_mouse (Mm), pkr1_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Interacting Proteins
Name Effect References
Melanocortin Receptor Accessory Protein 2 (MRAP2) MRAP2 promotes food intake through inhibition of PKR1 6,32
Natural/Endogenous Ligands Click here for help
prokineticin-1 {Sp: Human}
prokineticin-2 {Sp: Human}
prokineticin-2β {Sp: Human}
prokineticin-1 {Sp: Mouse}
prokineticin-2 {Sp: Mouse, Rat}
prokineticin-1 {Sp: Rat}
Comments: Prokineticin-2 is the higher potency endogenous agonist
Potency order of endogenous ligands (Human)
prokineticin-2 (PROK2, Q9HC23) > prokineticin-1 (PROK1, Q9HC23) > prokineticin-2β (PROK2)  [7,23,25,34]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
IS20 Small molecule or natural product Hs Agonist 7.4 pEC50 13
pEC50 7.4 (EC50 4.4x10-8 M) [13]
IS1 Small molecule or natural product Hs Agonist 5.6 pEC50 13
pEC50 5.6 [13]
MIT1 Peptide Click here for species-specific activity table Hs Full agonist 8.4 pIC50 25
pIC50 8.4 [25]
[125I]BH-MIT1 Peptide Click here for species-specific activity table Ligand is labelled Ligand is radioactive Hs Agonist 8.4 pIC50 25
pIC50 8.4 (IC50 4.1x10-9 M) [25]
prokineticin-2 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 8.2 – 8.4 pIC50 7,25
pIC50 8.2 – 8.4 [7,25]
prokineticin-2β {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 7.5 pIC50 7
pIC50 7.5 [7]
prokineticin-1 {Sp: Human} Peptide Click here for species-specific activity table Ligand is endogenous in the given species Hs Full agonist 6.6 – 7.6 pIC50 7,25
pIC50 6.6 – 7.6 [7,25]
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
triazine compound PC1 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.7 pKi 1
pKi 7.7 (Ki 2.2x10-8 M) [1]
triazine compound PC7 Small molecule or natural product Hs Antagonist 7.5 pIC50 17,31
pIC50 7.5 (IC50 3.3x10-8 M) [17,31]
triazine compound PC10 Small molecule or natural product Click here for species-specific activity table Hs Antagonist 7.0 pIC50 17
pIC50 7.0 (IC50 1.097x10-7 M) [17]
Antagonist Comments
Molecular modelling experiments showed triazine compound PC-25 to be a potent selective antagonist of the PKR1 receptor, and this compound was also shown to be able to abolish Bv8-induced hyperalgesia in mice [19]. The same paper lists triazine compound PC7 as having a pIC50 of 7.3 modelling experiments.
Allosteric Modulator Comments
Compounds IS1 and IS20, listed in the agonist table, also have activity as postive allosteric modulators at PKR1 [13].
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  23-24,34
Secondary Transduction Mechanisms Click here for help
Transducer Effector/Response
Gs family Adenylyl cyclase stimulation
References:  7
Tissue Distribution Click here for help
Testis, medulla oblongata, skin, skeletal muscle.
Species:  Human
Technique:  RT-PCR.
References:  34
Syncytiotrophoblasts, cytotrophoblasts, fetal endothelium, and macrophages
Species:  Human
Technique:  Immunohistochemistry
References:  9
Immune cells: CD19 >> CD4, CD8, CD14, Th1, Th2.
Species:  Human
Technique:  qPCR.
References:  10
Isolated trophoblast cells
Species:  Human
Technique:  RT-PCR
References:  15
Capillary endothelial cells of the testis interstitium.
Species:  Human
Technique:  in situ hybridisation.
References:  21
Endometrium.
Species:  Human
Technique:  RT-PCR.
References:  2
Endometrium
Species:  Human
Technique:  Immunohistochemistry
References:  11
Digestive tract: jejunum, ileum, ileocecum, ascending colon, transverse colon, descending colon > stomach, cecum, rectum.
Species:  Human
Technique:  RT-PCR.
References:  23
Mammary gland > placenta, lung, liver, brain > spleen, stomach.
Species:  Human
Technique:  RT-PCR.
References:  7
Adrenocortical H295R cells, human umbilical vein endothelial cells (HUVEC), human luteinized granulosa cells (hGLC), SV40 transformed human luteinized granulosa cell line (SVOG).
Species:  Human
Technique:  RT-PCR.
References:  18
Endocrine tissues: pancreas, adrenal gland, thyroid gland, salivary gland, pituitary gland.
Brain, spleen, prostate, testis, small intestine, leukocytes.
Species:  Human
Technique:  RT-PCR.
References:  23
Capillary endothelial cells of the testis interstitium.
Species:  Mouse
Technique:  in situ hybridisation.
References:  21
Prostate, ovary, testis.
Species:  Mouse
Technique:  Taqman analysis.
References:  20
Macrophages.
Species:  Mouse
Technique:  RT-PCR.
References:  24
Thymus >> bone marrow > lymph node.
Species:  Mouse
Technique:  qPCR.
References:  10
Adult heart, cardiac cells
Species:  Mouse
Technique:  Immunohistochemistry
References:  36
Neural crest cells
Species:  Mouse
Technique:  In situ hybridisation
References:  28
Myenteric plexus neurons
Species:  Mouse
Technique:  Immunocytochemistry
References:  16
Spleen > lung, adipose tissues > thymus, kidney, testis, uterus, small intestine.
Species:  Rat
Technique:  RT-PCR.
References:  25
CNS: dorsal root ganglia, dorsal quadrants of spinal cord.
Species:  Rat
Technique:  RT-PCR.
References:  27
Ileal crypt cells, submucosal and myenteric neurons
Species:  Rat
Technique:  Immunohistochemistry
References:  39
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Measurement of the activity of p44/p42 MAPK in HEK 293 cells transfected with the PKR1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Phosphorylation of p44/p42 MAPK.
References:  23
Measurement of intracellular Ca2+ in CHO cells transfected with the rat PKR1 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Increase in [Ca2+]i.
References:  25
Measurement of intracellular [Ca2+] in CHO cells transfected with the human PKR1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Mobilisation of Ca2+.
References:  5,23,34
Measurement of IP levels in COS-7 cells transfected with the human PKR1 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in IP levels.
References:  23
Measurement of [3H]thymidine incorporation in CHO cells transfected with the human PKR1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of thymidine incorporation.
References:  5
Measurement of Ca2+ and cAMP levels in HEK 293 cells transfected with the human PKR1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Mobilisation of Ca2+ and stimulation of cAMP accumulation.
References:  7
Physiological Functions Click here for help
Macrophage migration and the production of pro-inflammatory cytokines.
Species:  Mouse
Tissue:  Macrophages.
References:  24
Decrease of IL-10 and IL-14 production in mouse splenocytes
Species:  Mouse
Tissue:  Splenocytes
References:  12
Modulation of interleukin (IL)-11 expression
Species:  Human
Tissue:  Ishikawa cells
References:  8
Stimulation of proliferation, migration, and angiogenesis in H5V cells
Species:  Mouse
Tissue:  Heart
References:  14
Reduction of food intake and body weight in mice
Species:  Mouse
Tissue:  In vivo
References:  3
Heat hyperalgesia by sensitizing TRPV1 through activation of PKCε
Species:  Rat
Tissue:  Dorsal root ganglion
References:  38
Physiological Consequences of Altering Gene Expression Click here for help
PKR1 receptor knockout mice lack macrophage chemotaxis and cytokine production.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  24
Knock down of PKR1 inhibits prokineticin-2-induced vessel formation and MAPK/Akt activation
Species:  Mouse
Tissue:  H5V cells
Technique:  RNA interference (RNAi)
References:  14
Overexpression of PKR1 promotes cardiomyocyte survival and angiogenesis
Species:  Mouse
Tissue:  H5V cells
Technique:  Viral gene transfer
References:  36
Overexpressing PKR1 induces neovascularization and epicardial-derived progenitor cell differentiation
Species:  Mouse
Tissue:  Heart
Technique:  Gene over-expression
References:  37
PKR1 knockdown completely abolishes Prok-1 induced proliferation
Species:  Mouse
Tissue:  Neural crest cells
Technique:  RNA interference (RNAi)
References:  28
Pkr1-null mice exhibit impaired nociception and inflammatory pain sensation
Species:  Mouse
Tissue:  In vivo
Technique:  Gene knockout
References:  26
Conditional disruption of the PKR1 induces heart and kidney disorders
Species:  Mouse
Tissue:  In vivo
Technique:  Gene knockout
References:  4
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Prokr1tm1.1Cagn Prokr1tm1.1Cagn/Prokr1tm1.1Cagn
Not Specified
MGI:1929676  MP:0003658 abnormal capillary morphology PMID: 18421008 
Prokr1tm1.1Cagn Prokr1tm1.1Cagn/Prokr1tm1.1Cagn
Not Specified
MGI:1929676  MP:0001544 abnormal cardiovascular system physiology PMID: 18421008 
Prokr1tm1.1Cagn Prokr1tm1.1Cagn/Prokr1tm1.1Cagn
Not Specified
MGI:1929676  MP:0000266 abnormal heart morphology PMID: 18421008 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0002736 abnormal nociception after inflammation PMID: 16793879 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0002733 abnormal thermal nociception PMID: 16793879 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0005534 decreased body temperature PMID: 16793879 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0003043 hypoalgesia PMID: 16793879 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0005498 hyporesponsive to tactile stimuli PMID: 16793879 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0008531 increased chemical nociceptive threshold PMID: 16793879 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0003911 increased drinking behavior PMID: 16793879 
Prokr1tm1Lex Prokr1tm1Lex/Prokr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:1929676  MP:0001973 increased thermal nociceptive threshold PMID: 16793879 
Prokr1tm1Api Prokr1tm1Api/Prokr1tm1Api
involves: C57BL/6 * CBA
MGI:1929676  MP:0002169 no abnormal phenotype detected PMID: 16537498 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Colorectal cancer
Disease Ontology: DOID:9256
OMIM: 114500
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human D47Y c.139G>T 29
Missense Human A194V c.581C>T 29
Missense Human A198V c.593C>T 29
Missense Human V306M c.916G>A 29
Missense Human R307H c.920G>A 29
Missense Human V313M c.937G>A 29
Missense Human E328D c.984G>T 29
Missense Human V350I c.1048G>A 29
Disease:  Endometrial cancer
Disease Ontology: DOID:1380
OMIM: 608089
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human L129P c.575T>C 29
Missense Human E270K c.808G>A 29
Disease:  Gastric cancer
Synonyms: Stomach cancer
Disease Ontology: DOID:10534
OMIM: 613659
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human I379V c.1135A>G Mutation associated with adenocarcinoma of the stomach 29
Disease:  Hirschsprung disease
OMIM: 142623
Orphanet: ORPHA388
References:  33
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human K354N c.1062A>T 33
Disease:  Lung cancer
Disease Ontology: DOID:1324
OMIM: 211980
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Frameshift: Insertion Human I356fs*14 c.1059_1060insA Mutation associated with small cell carcinoma 29
Missense Human G6E c.17G>A Mutation associated with small cell carcinoma 29
Missense Human G77S c.229G>A Mutation associated with squamous cell carcinoma 29
Missense Human A86V c.257C>T Mutation associated with small cell carcinoma 29
Missense Human R94C c.280C>T Mutation associated with adenocarcinoma 29
Missense Human R307H c.920G>A Mutation associated with adenocarcinoma 29
Missense Human K318M c.953A>T Mutation associated with squamous cell carcinoma 29
Disease:  Ovarian cancer
Disease Ontology: DOID:2394
OMIM: 167000
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human M332R c.995T>G 29
Disease:  Prostate cancer
Disease Ontology: DOID:10283
OMIM: 176807
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human R126H c.377G>A 29
Missense Human S147T c.439T>A 29
Disease:  Rectum cancer
Disease Ontology: DOID:1993
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human F324L c.972C>A Mutation associated with adenocarcinoma 29
Disease:  Renal carcinoma
Synonyms: Kidney carcinoma
Disease Ontology: DOID:4451
References:  29
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human A298V c.893C>T Mutation associated with clear cell renal carcinoma 29
Missense Human T384N c.1151C>A Mutation associated with clear cell renal carcinoma 29
Clinically-Relevant Mutations and Pathophysiology Comments
Other mutations in PROKR1 are associated with cancer:- mouth (H26Y) [29].
Biologically Significant Variants Click here for help
Type:  Missense mutation
Species:  Human
Description:  Mutation confers lower risk for recurrent miscarriage and may play a protective role in early pregnancy by altering calcium signaling and facilitating cell invasiveness.
Amino acid change:  I379V
SNP accession: 
References:  35
Biologically Significant Variant Comments
Other possible variants of PKR1 due to single nucleotide polymorphism (SNP): see [35] and the Exome Variant Server Data Browser.

References

Show »

1. Balboni G, Lazzari I, Trapella C, Negri L, Lattanzi R, Giannini E, Nicotra A, Melchiorri P, Visentin S, Nuccio CD et al.. (2008) Triazine compounds as antagonists at Bv8-prokineticin receptors. J Med Chem, 51 (23): 7635-9. [PMID:19006379]

2. Battersby S, Critchley HO, Morgan K, Millar RP, Jabbour HN. (2004) Expression and regulation of the prokineticins (endocrine gland-derived vascular endothelial growth factor and Bv8) and their receptors in the human endometrium across the menstrual cycle. J Clin Endocrinol Metab, 89 (5): 2463-9. [PMID:15126578]

3. Beale K, Gardiner JV, Bewick GA, Hostomska K, Patel NA, Hussain SS, Jayasena CN, Ebling FJ, Jethwa PH, Prosser HM et al.. (2013) Peripheral administration of prokineticin 2 potently reduces food intake and body weight in mice via the brainstem. Br J Pharmacol, 168 (2): 403-10. [PMID:22935107]

4. Boulberdaa M, Turkeri G, Urayama K, Dormishian M, Szatkowski C, Zimmer L, Messaddeq N, Laugel V, Dollé P, Nebigil CG. (2011) Genetic inactivation of prokineticin receptor-1 leads to heart and kidney disorders. Arterioscler Thromb Vasc Biol, 31 (4): 842-50. [PMID:21273561]

5. Bullock CM, Li JD, Zhou QY. (2004) Structural determinants required for the bioactivities of prokineticins and identification of prokineticin receptor antagonists. Mol Pharmacol, 65 (3): 582-8. [PMID:14978236]

6. Chaly AL, Srisai D, Gardner EE, Sebag JA. (2016) The Melanocortin Receptor Accessory Protein 2 promotes food intake through inhibition of the Prokineticin Receptor-1. Elife, 5. [PMID:26829592]

7. Chen J, Kuei C, Sutton S, Wilson S, Yu J, Kamme F, Mazur C, Lovenberg T, Liu C. (2005) Identification and pharmacological characterization of prokineticin 2 beta as a selective ligand for prokineticin receptor 1. Mol Pharmacol, 67 (6): 2070-6. [PMID:15772293]

8. Cook IH, Evans J, Maldonado-Pérez D, Critchley HO, Sales KJ, Jabbour HN. (2010) Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway. Mol Hum Reprod, 16 (3): 158-69. [PMID:19801577]

9. Denison FC, Battersby S, King AE, Szuber M, Jabbour HN. (2008) Prokineticin-1: a novel mediator of the inflammatory response in third-trimester human placenta. Endocrinology, 149 (7): 3470-7. [PMID:18372330]

10. Dorsch M, Qiu Y, Soler D, Frank N, Duong T, Goodearl A, O'Neil S, Lora J, Fraser CC. (2005) PK1/EG-VEGF induces monocyte differentiation and activation. J Leukoc Biol, 78 (2): 426-34. [PMID:15908459]

11. Evans J, Catalano RD, Morgan K, Critchley HO, Millar RP, Jabbour HN. (2008) Prokineticin 1 signaling and gene regulation in early human pregnancy. Endocrinology, 149 (6): 2877-87. [PMID:18339712]

12. Franchi S, Giannini E, Lattuada D, Lattanzi R, Tian H, Melchiorri P, Negri L, Panerai AE, Sacerdote P. (2008) The prokineticin receptor agonist Bv8 decreases IL-10 and IL-4 production in mice splenocytes by activating prokineticin receptor-1. BMC Immunol, 9: 60. [PMID:18957080]

13. Gasser A, Brogi S, Urayama K, Nishi T, Kurose H, Tafi A, Ribeiro N, Désaubry L, Nebigil CG. (2015) Discovery and cardioprotective effects of the first non-Peptide agonists of the G protein-coupled prokineticin receptor-1. PLoS ONE, 10 (4): e0121027. [PMID:25831128]

14. Guilini C, Urayama K, Turkeri G, Dedeoglu DB, Kurose H, Messaddeq N, Nebigil CG. (2010) Divergent roles of prokineticin receptors in the endothelial cells: angiogenesis and fenestration. Am J Physiol Heart Circ Physiol, 298 (3): H844-52. [PMID:20023120]

15. Hoffmann P, Feige JJ, Alfaidy N. (2006) Expression and oxygen regulation of endocrine gland-derived vascular endothelial growth factor/prokineticin-1 and its receptors in human placenta during early pregnancy. Endocrinology, 147 (4): 1675-84. [PMID:16384869]

16. Hoogerwerf WA. (2006) Prokineticin 1 inhibits spontaneous giant contractions in the murine proximal colon through nitric oxide release. Neurogastroenterol Motil, 18 (6): 455-63. [PMID:16700725]

17. Jacobson O, Weiss ID, Niu G, Balboni G, Congiu C, Onnis V, Kiesewetter DO, Lattanzi R, Salvadori S, Chen X. (2011) Prokineticin receptor 1 antagonist PC-10 as a biomarker for imaging inflammatory pain. J Nucl Med, 52 (4): 600-7. [PMID:21421710]

18. Kisliouk T, Levy N, Hurwitz A, Meidan R. (2003) Presence and regulation of endocrine gland vascular endothelial growth factor/prokineticin-1 and its receptors in ovarian cells. J Clin Endocrinol Metab, 88: 3700-3707. [PMID:12915658]

19. Lattanzi R, Congui C, Onnis V, Deplano A, Salvadori S, Marconi V, Maftei D, Francisco A, Ambrosio C, Casella I, Costa T, Calatabiano G, Matsoukas MT, Balboni G, Negri L. (2014) Halogenated triazinediones behave as antagonists of PKR1: in vitro and in vivo pharmacological characterization. Int J Pharm Sci Res, 5 (11): 5066-5074.

20. LeCouter J, Lin R, Frantz G, Zhang Z, Hillan K, Ferrara N. (2003) Mouse endocrine gland-derived vascular endothelial growth factor: a distinct expression pattern from its human ortholog suggests different roles as a regulator of organ-specific angiogenesis. Endocrinology, 144 (6): 2606-16. [PMID:12746324]

21. LeCouter J, Lin R, Tejada M, Frantz G, Peale F, Hillan KJ, Ferrara N. (2003) The endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: Localization of Bv8 receptors to endothelial cells. Proc Natl Acad Sci USA, 100 (5): 2685-90. [PMID:12604792]

22. LeCouter J, Zlot C, Tejada M, Peale F, Ferrara N. (2004) Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc Natl Acad Sci USA, 101 (48): 16813-8. [PMID:15548611]

23. Lin DC, Bullock CM, Ehlert FJ, Chen JL, Tian H, Zhou QY. (2002) Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J Biol Chem, 277 (22): 19276-80. [PMID:11886876]

24. Martucci C, Franchi S, Giannini E, Tian H, Melchiorri P, Negri L, Sacerdote P. (2006) Bv8, the amphibian homologue of the mammalian prokineticins, induces a proinflammatory phenotype of mouse macrophages. Br J Pharmacol, 147 (2): 225-34. [PMID:16299550]

25. Masuda Y, Takatsu Y, Terao Y, Kumano S, Ishibashi Y, Suenaga M, Abe M, Fukusumi S, Watanabe T, Shintani Y et al.. (2002) Isolation and identification of EG-VEGF/prokineticins as cognate ligands for two orphan G-protein-coupled receptors. Biochem Biophys Res Commun, 293 (1): 396-402. [PMID:12054613]

26. Negri L, Lattanzi R, Giannini E, Colucci M, Margheriti F, Melchiorri P, Vellani V, Tian H, De Felice M, Porreca F. (2006) Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J Neurosci, 26 (25): 6716-27. [PMID:16793879]

27. Negri L, Lattanzi R, Giannini E, Metere A, Colucci M, Barra D, Kreil G, Melchiorri P. (2002) Nociceptive sensitization by the secretory protein Bv8. Br J Pharmacol, 137 (8): 1147-54. [PMID:12466223]

28. Ngan ES, Lee KY, Sit FY, Poon HC, Chan JK, Sham MH, Lui VC, Tam PK. (2007) Prokineticin-1 modulates proliferation and differentiation of enteric neural crest cells. Biochim Biophys Acta, 1773 (4): 536-45. [PMID:17324478]

29. O'Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. (2013) The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer, 13 (6): 412-24. [PMID:23640210]

30. Parker R, Liu M, Eyre HJ, Copeland NG, Gilbert DJ, Crawford J, Sutherland GR, Jenkins NA, Herzog H. (2000) Y-receptor-like genes GPR72 and GPR73: molecular cloning, genomic organisation and assignment to human chromosome 11q21.1 and 2p14 and mouse chromosome 9 and 6. Biochim Biophys Acta, 1491 (1-3): 369-75. [PMID:10760605]

31. Ralbovsky JL, Lisko JG, Palmer JM, Mabus J, Chevalier KM, Schulz MJ, Dyatkin AB, Miskowski TA, Coats SJ, Hornby P et al.. (2009) Triazinediones as prokineticin 1 receptor antagonists. Part 1: SAR, synthesis and biological evaluation. Bioorg Med Chem Lett, 19 (10): 2661-3. [PMID:19375913]

32. Rouault AAJ, Lee AA, Sebag JA. (2017) Regions of MRAP2 required for the inhibition of orexin and prokineticin receptor signaling. Biochim Biophys Acta Mol Cell Res, 1864 (12): 2322-2329. [PMID:28939058]

33. Ruiz-Ferrer M, Torroglosa A, Núñez-Torres R, de Agustín JC, Antiñolo G, Borrego S. (2011) Expression of PROKR1 and PROKR2 in human enteric neural precursor cells and identification of sequence variants suggest a role in HSCR. PLoS ONE, 6 (8): e23475. [PMID:21858136]

34. Soga T, Matsumoto Si, Oda T, Saito T, Hiyama H, Takasaki J, Kamohara M, Ohishi T, Matsushime H, Furuichi K. (2002) Molecular cloning and characterization of prokineticin receptors. Biochim Biophys Acta, 1579 (2-3): 173-9. [PMID:12427552]

35. Su MT, Lin SH, Chen YC, Wu LW, Kuo PL. (2013) Prokineticin receptor variants (PKR1-I379V and PKR2-V331M) are protective genotypes in human early pregnancy. Reproduction, 146 (1): 63-73. [PMID:23687280]

36. Urayama K, Guilini C, Messaddeq N, Hu K, Steenman M, Kurose H, Ert G, Nebigil CG. (2007) The prokineticin receptor-1 (GPR73) promotes cardiomyocyte survival and angiogenesis. FASEB J, 21 (11): 2980-93. [PMID:17442730]

37. Urayama K, Guilini C, Turkeri G, Takir S, Kurose H, Messaddeq N, Dierich A, Nebigil CG. (2008) Prokineticin receptor-1 induces neovascularization and epicardial-derived progenitor cell differentiation. Arterioscler Thromb Vasc Biol, 28 (5): 841-9. [PMID:18421008]

38. Vellani V, Colucci M, Lattanzi R, Giannini E, Negri L, Melchiorri P, McNaughton PA. (2006) Sensitization of transient receptor potential vanilloid 1 by the prokineticin receptor agonist Bv8. J Neurosci, 26 (19): 5109-16. [PMID:16687502]

39. Wade PR, Palmer JM, Mabus J, Saunders PR, Prouty S, Chevalier K, Gareau MG, McKenney S, Hornby PJ. (2010) Prokineticin-1 evokes secretory and contractile activity in rat small intestine. Neurogastroenterol Motil, 22 (5): e152-61. [PMID:19930539]

Contributors

Show »

How to cite this page