Top ▲

C3a receptor

Click here for help

Target id: 31

Nomenclature: C3a receptor

Family: Complement peptide receptors

Gene and Protein Information Click here for help
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 482 12p13.31 C3AR1 complement C3a receptor 1 24
Mouse 7 477 6 F2 C3ar1 complement component 3a receptor 1 24
Rat 7 473 4q42 C3ar1 complement C3a receptor 1
Previous and Unofficial Names Click here for help
C3AR | C3a anaphylatoxin chemotactic receptor | C3a-R | anaphylatoxin C3a receptor | complement component 3a receptor 1
Database Links Click here for help
Specialist databases
GPCRdb c3ar_human (Hs), c3ar_mouse (Mm), c3ar_rat (Rn)
Other databases
Alphafold
ChEMBL Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Natural/Endogenous Ligands Click here for help
C5a {Sp: Human}
C3a {Sp: Human}
C5a {Sp: Mouse}
C3a {Sp: Mouse}
C5a {Sp: Rat}
C3a {Sp: Rat}
Comments: C3a anaphylatoxin has a higher potency than C5a anaphylatoxin
Potency order of endogenous ligands (Human)
C3a (C3, P01024) > C5a (C5, P01031)  [3]

Download all structure-activity data for this target as a CSV file go icon to follow link

Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
[125I]C3a (human) Peptide Ligand is labelled Ligand is radioactive Hs Full agonist 8.4 pKd 11
pKd 8.4 (Kd 3.85x10-9 M) [11]
Eu-DTPA-hC3a Peptide Ligand is labelled Hs Agonist 8.1 pKd 13
pKd 8.1 (Kd 8.7x10-9 M) [13]
C3a {Sp: Human} Peptide Ligand is endogenous in the given species Hs Agonist 9.6 pEC50 4
pEC50 9.6 (EC50 2.4x10-10 M) [4]
Description: In a calcium mobilisation assay using RBL-2H3 cells stably expressing the hC3aR.
E7 Peptide Hs Full agonist 8.7 pEC50 4,15,45
pEC50 8.7 (EC50 2x10-9 M) [4,15,45]
compound 17 [PMID: 24257095] Small molecule or natural product Hs Agonist 8.1 pEC50 41
pEC50 8.1 [41]
compound 21 [PMID: 25259874] Small molecule or natural product Hs Full agonist 7.7 pEC50 40
pEC50 7.7 (EC50 2x10-8 M) [40]
C3a {Sp: Human} Peptide Ligand is endogenous in the given species Hs Full agonist 7.3 pEC50 45
pEC50 7.3 (EC50 5.3x10-8 M) [45]
YSFKPMPLaR Peptide Click here for species-specific activity table Hs Full agonist 6.7 pEC50 45
pEC50 6.7 (EC50 2.2x10-7 M) [45]
SQ007-5 Peptide Hs Partial agonist 6.7 pEC50 7
pEC50 6.7 [7]
FLPLAR Peptide Hs Full agonist 6.4 pEC50 45
pEC50 6.4 (EC50 4.2x10-7 M) [45]
Ac-RHYPLWR Peptide Hs Full agonist 6.0 pEC50 20
pEC50 6.0 (EC50 1.1x10-6 M) [20]
WWGKKYRASKLGLAR Peptide Hs Full agonist 5.9 pEC50 45
pEC50 5.9 (EC50 1.3x10-6 M) [45]
WWGKKYRASKLGLAR Peptide Hs Full agonist 8.7 pIC50 45
pIC50 8.7 (IC50 2x10-9 M) [45]
TLQP-21 {Sp: Human} Peptide Ma Agonist 6.9 pIC50 21
pIC50 6.9 (IC50 1.139x10-7 M) [21]
Description: Displacement of 125I-labeled human C3a from hamster C3AR1-expressing HEK293 cell membranes
C3a receptor agonist Small molecule or natural product Hs Agonist 6.1 pIC50 14
pIC50 6.1 (IC50 7.94x10-7 M) [14]
Description: IC50 determined in a radioligand displacement assay; displacing [125I]C3a from hC3a receptor expressed in HMC1 cells co-expressing aequorin.
casoxin C Peptide Hs Agonist 4.4 pIC50 50,58
pIC50 4.4 (IC50 4x10-5 M) [50,58]
albutensin A Peptide Hs Agonist - - 35,58
[35,58]
oryzatensin Peptide Hs Agonist - - 26,51,58
[26,51,58]
View species-specific agonist tables
Agonist Comments
The receptor affinity of pEC50 5.9 for WWGKKYRASKLGLAR was detected by a binding assay. C3a receptor has no detectable affinity for the metabolite C3a des Arg. The rodent receptor was recently suggested to interact with vgf gene product TLQP-21, however the binding affinity was found to be relatively low [21]. SB290157 has also been reported to have agonist properties at the C3a receptor [32].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Reference
JR14a Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 8.0 pIC50 42
pIC50 8.0 (IC50 1x10-8 M) [42]
Description: Inhibition of C3aR agonist-induced Ca2+ Release in human monocyte-derived macrophages.
SB290157 Small molecule or natural product Immunopharmacology Ligand Hs Antagonist 7.6 pIC50 2,30
pIC50 7.6 (IC50 2.8x10-8 M) SB290157 has also been reported to have agonist properties at the C3a receptor, and act as a weak C5aR2 activator [2,30]
FLTChaAR Peptide Hs Antagonist 6.6 pIC50 45
pIC50 6.6 (IC50 2.38x10-7 M) [45]
compound 4 [PMID: 25259874] Small molecule or natural product Hs Antagonist 5.9 pIC50 40
pIC50 5.9 (IC50 1.3x10-6 M) [40]
Antagonist Comments
The pIC50 value for FLTChaAR affinity value was obtained from a binding assay. SB290157 has also been reported to have agonist properties at the C3a receptor [32].
Immunopharmacology Comments
Complement C3a receptor 1 is the receptor for complement factor C3a, a component of the alternative complement cascade. It can have pro-inflammatory actions, but can also counteract the proinflammatory effects of C5a.
The complement system plays a critical role intestinal immune homeostasis. In particular, C3 and the C3aR have been identified as being involved in regulating the intestinal immune response during chronic colitis [48,55]. C3aR is also reported to provide protection from tissue damage in an intestinal ischemia-reperfusion model, an effect that is mediated by inhibition of neutrophil mobilisation [57].
The biological action of C3aR agonists and antagonists can be monitored by measuring receptor-mediated cytokine release from human macrophages [40], and C3aR biology further examined by assessing granulocyte/neutrophil mobilisation in response to injury or G-CSF [57].
Cell Type Associations
Immuno Cell Type:  Macrophages & monocytes
Cell Ontology Term:   macrophage (CL:0000235)
References:  17,38
Immuno Cell Type:  Granulocytes
Cell Ontology Term:   eosinophil (CL:0000771)
References:  38
Immuno Cell Type:  Innate lymphoid cells
Cell Ontology Term:   group 3 innate lymphoid cell (CL:0001071)
Comment:  Some lamina propria-derived type 3 innate lymphoid cells express C3aR in the mouse.
Immuno Cell Type:  Dendritic cells
Cell Ontology Term:   conventional dendritic cell (CL:0000990)
Comment:  Lung-resident CD11b+ cDCs and monocyte-derived DCs, and lamina propria CD103+, and CD11b+ cDCs express C3aR in the mouse.
References:  38
Immuno Cell Type:  Mast cells
Cell Ontology Term:   mast cell (CL:0000097)
Comment:  C3aR expression was not detected in mouse mast cells using a floxed tdTomato-C3aR reporter knock-in system (Quell et al., 2017).
References:  38
Immuno Process Associations
Immuno Process:  Inflammation
Immuno Process:  Immune regulation
Immuno Process:  Chemotaxis & migration
Immuno Process:  Cellular signalling
Immuno Process:  Cytokine production & signalling
Immuno Process:  B cell (activation)
Immuno Process:  Immune system development
Immuno Process:  T cell (activation)
Primary Transduction Mechanisms Click here for help
Transducer Effector/Response
G protein (identity unknown) Other - See Comments
Comments:  β-arrestin is required for mast cell degranulation in response to C3a
References:  19,54
Secondary Transduction Mechanisms Click here for help
Comments:  C3aR exhibits a cell-type specific use of secondary signalling cascades. For example, in astrocytes, C3aR causes a transient increase in intracellular calcium mediated by PKC activity, a decrease in cAMP concentrations and an increase in MAPK pathway constituent phosphorylation [43]. In mast cells and human umbilical vein endothelial cells, C3aR activation has also been shown to cause sustained MAPK phosphorylation, leading to the production of cytokines, however in neural precursors C3aR is an inhibitor of this pathway [33,46,53].
References: 
Tissue Distribution Click here for help
Monocytes, neutrophils, astrocytes
Species:  Human
Technique:  FACS
References:  18
Fibroblasts: tenocytes and myofibroblasts
Species:  Human
Technique:  RT-PCR
References:  9,23
Dendritic Cells and lymphocytes
Species:  Human
Technique:  Immunocytochemistry
References:  16,28,36,47
Keratinocytes
Species:  Human
Technique:  Immunocytochemistry
References:  37
Mesenchymal stem cells, osteoblasts and osteoclasts
Species:  Human
Technique:  Immunocytochemistry
References:  25,44
Placenta (Hofbauer cells)
Species:  Human
Technique:  Immunohistochemistry
References:  31
Neural stem cells, immature neurons, oligodendrocytes, microglia
Species:  Mouse
Technique:  Immunohistochemistry
References:  18,39
Retina
Species:  Mouse
Technique:  Immunohistochemistry
References:  59
Cells of the small intestine lamina propria.
Species:  Mouse
Technique:  Floxed tdTomato-C3aR reporter knock-in.
References:  38
Brain vascular endothelial cells
Species:  Mouse
Technique:  Immunohistochemistry
References:  18
Kidney
Species:  Mouse
Technique:  Immunohistochemistry
References:  6,52
Expression Datasets Click here for help

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays Click here for help
Enzyme Release/Degranulation
Species:  Human
Tissue:  RBL-2H3 C3aR transfected cells
Response measured:  Increased β-hexosaminidase release
References:  7
Calcium Mobilisation
Species:  Human
Tissue:  Macrophage cells
Response measured:  Mobilisation of intracellular calcium stores
References:  7
ERK1/2 Phosphorylation
Species:  Human
Tissue:  Monocytes, HEK293 C3aR transfected cells
Response measured:  Increase in phosphorylated-ERK1/2 as detected by Western blot
References:  44
Chemotaxis
Species:  Human
Tissue:  Mast Cells
Response measured:  Chemotaxis
References:  22
Physiological Functions Click here for help
Chemotaxis
Species:  Human
Tissue:  Mesenchymal stem cells, rat cerebellar granule cells
References:  10,44
Degranulation
Species:  Human
Tissue:  Basophils, eosinophils, mast Cells
References:  1,49,54
Proliferation
Species:  Mouse
Tissue:  Neural stem cells and immature neurons
References:  39
Cytokine production
Species:  Mouse
Tissue:  Dendritic Cells, T-Cells
References:  36,47
Osteoclast formation
Species:  Human
Tissue:  Osteoclasts
References:  25
Physiological Consequences of Altering Gene Expression Click here for help
In a mouse model of collagen antibody-induced rheumatoid arthritis, C3aR knockout mice showed a 52% decrease in a clinical disease activity score. Decreases in synovial macrophages and neutrophils were also observed in the C3aR knockout mice compared to wildtype.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  5
C3aR knockout mice showed an increase in cytokine response during the sensitisation phase of allergic contact dermatitis (ACD). No difference was observed in contact sensitivity or cytokine levels during the elicitation phase of ACD.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  34
C3aR knockout mice demonstrated an accelerated onset of renal injury in a model of systemic lupus erythematosus (SLE). C3aR knockout mice showed an increase in chemokine and cytokine levels in the kidney associated with a more rapid rise in serum creatinine and accelerated renal fibrosis. Although disease onset was accelerated, no long term impact of C3aR knockout was seen, with no change in long-term injury or survival of C3aR knockout mice in comparison to wildtype.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  56
C3aR knockout mice show enchanced lethality to LPS induced endotoxic shock. Elevations in plasma IL-1B were also observed.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  27
C3aR knockout mice develop early onset and progressive retinal degeneration in comparison to wildtype. Increased cell death and retinal dysfunction upon light exposure was observed.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts
References:  59
C3aR knockout mice have been demonstrated to have reduced airway hyperresponsiveness (AHR) in models of allergic asthma and respiratory syncytial virus infection. This protection is due to a reduction in C3aR-induced tachykinin release leading to a decreased IL-17A induced TH17 cell population.
Species:  Mouse
Tissue:  Lung
Technique:  Gene knockouts
References:  8,29
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0002420 abnormal adaptive immunity PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0002465 abnormal eosinophil physiology PMID: 12421977 
C3ar1tm1Dgen C3ar1tm1Dgen/C3ar1tm1Dgen
involves: 129P2/OlaHsd
MGI:1097680  MP:0005334 abnormal fat pad morphology PMID: 19270708 
C3ar1+|C3ar1tm1Raw C3ar1tm1Raw/C3ar1+
involves: 129X1/SvJ * C57BL/6
MGI:1097680  MP:0001790 abnormal immune system physiology PMID: 11067891 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0008751 abnormal interleukin level PMID: 12421977 
C3ar1tm1Dgen C3ar1tm1Dgen/C3ar1tm1Dgen
involves: 129P2/OlaHsd
MGI:1097680  MP:0003959 abnormal lean body mass PMID: 19270708 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0002281 abnormal respiratory mucosa goblet cell morphology PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0008092 abnormal T-helper 2 cell differentiation PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0005466 abnormal T-helper 2 physiology PMID: 12421977 
C3ar1tm1Cge C3ar1tm1Cge/C3ar1tm1Cge
involves: 129S4/SvJae * BALB/c
MGI:1097680  MP:0002335 decreased airway responsiveness PMID: 10984054 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0002335 decreased airway responsiveness PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0005012 decreased eosinophil cell number PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0002492 decreased IgE level PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0008495 decreased IgG1 level PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0008700 decreased interleukin-4 secretion PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0005517 decreased liver regeneration PMID: 15240660 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0005016 decreased lymphocyte cell number PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0000222 decreased neutrophil cell number PMID: 12421977 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0004800 decreased susceptibility to experimental autoimmune encephalomyelitis PMID: 15383607 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0000921 demyelination PMID: 15383607 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0008719 impaired neutrophil recruitment PMID: 12421977 
C3ar1tm1Raw|Cpn1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw,Cpn1tm1Raw/Cpn1tm1Raw
B6.129-C3ar1 Cpn1
MGI:1097680  MGI:2135874  MP:0005088 increased acute inflammation PMID: 19414808 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
involves: 129X1/SvJ * C57BL/6
MGI:1097680  MP:0008641 increased circulating interleukin-1 beta level PMID: 11067891 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0008641 increased circulating interleukin-1 beta level PMID: 15383607 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
involves: 129X1/SvJ * C57BL/6
MGI:1097680  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 11067891 
C3ar1+|C3ar1tm1Raw C3ar1tm1Raw/C3ar1+
involves: 129X1/SvJ * C57BL/6
MGI:1097680  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 11067891 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
involves: 129X1/SvJ * C57BL/6
MGI:1097680  MP:0008735 increased susceptibility to endotoxin shock PMID: 11067891 
C3ar1tm1Raw C3ar1tm1Raw/C3ar1tm1Raw
B6.129X1(B6)-C3ar1
MGI:1097680  MP:0005596 increased susceptibility to type I hypersensitivity reaction PMID: 12421977 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Neuromyelitis optica
Description: Neuromyelitis optica (NMO) is an inflammatory demyelinating disease. It selectively causes inflammation in the optic nerves (optic neuritis) and spinal cord (myelitis). Some neuromyelitis optica sufferers are seropositive for IgG autoantibodies against the aquaporin 4 (AQP4) water channel that is expressed in the brain. Patients with NMO frequently have other systemic autoimmune disorders (e.g. systemic lupus erythematosus, Sjögren's syndrome or myasthenia gravis).
Synonyms: Devic's disease/syndrome
Neuromyelitis optica spectrum disorder
NMOSD
Disease Ontology: DOID:8869
OMIM: 600308
Orphanet: ORPHA71211
Role: 
References:  12

References

Show »

1. Ahamed J, Haribabu B, Ali H. (2001) Cutting edge: Differential regulation of chemoattractant receptor-induced degranulation and chemokine production by receptor phosphorylation. J Immunol, 167 (7): 3559-63. [PMID:11564766]

2. Ames RS, Lee D, Foley JJ, Jurewicz AJ, Tornetta MA, Bautsch W, Settmacher B, Klos A, Erhard KF, Cousins RD et al.. (2001) Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol, 166 (10): 6341-8. [PMID:11342658]

3. Ames RS, Nuthulaganti P, Kumar C. (1996) In Xenopus oocytes the human C3a and C5a receptors elicit a promiscuous response to the anaphylatoxins. FEBS Lett, 395 (2-3): 157-9. [PMID:8898085]

4. Ames RS, Tornetta MA, Foley JJ, Hugli TE, Sarau HM. (1997) Evidence that the receptor for C4a is distinct from the C3a receptor. Immunopharmacology, 38 (1-2): 87-92. [PMID:9476119]

5. Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K, Merkel TJ, Stahl GL, Mueller-Ortiz S, Wetsel R et al.. (2012) Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J Immunol, 188 (3): 1469-78. [PMID:22205026]

6. Bao L, Osawe I, Haas M, Quigg RJ. (2005) Signaling through up-regulated C3a receptor is key to the development of experimental lupus nephritis. J Immunol, 175 (3): 1947-55. [PMID:16034139]

7. Bellows-Peterson ML, Fung HK, Floudas CA, Kieslich CA, Zhang L, Morikis D, Wareham KJ, Monk PN, Hawksworth OA, Woodruff TM. (2012) De novo peptide design with C3a receptor agonist and antagonist activities: theoretical predictions and experimental validation. J Med Chem, 55 (9): 4159-68. [PMID:22500977]

8. Bera MM, Lu B, Martin TR, Cui S, Rhein LM, Gerard C, Gerard NP. (2011) Th17 cytokines are critical for respiratory syncytial virus-associated airway hyperreponsiveness through regulation by complement C3a and tachykinins. J Immunol, 187 (8): 4245-55. [PMID:21918196]

9. Busch C, Girke G, Kohl B, Stoll C, Lemke M, Krasnici S, Ertel W, Silawal S, John T, Schulze-Tanzil G. (2013) Complement gene expression is regulated by pro-inflammatory cytokines and the anaphylatoxin C3a in human tenocytes. Mol Immunol, 53 (4): 363-73. [PMID:23070120]

10. Bénard M, Raoult E, Vaudry D, Leprince J, Falluel-Morel A, Gonzalez BJ, Galas L, Vaudry H, Fontaine M. (2008) Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum. Mol Immunol, 45 (14): 3767-74. [PMID:18635264]

11. Chao TH, Ember JA, Wang M, Bayon Y, Hugli TE, Ye RD. (1999) Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. J Biol Chem, 274 (14): 9721-8. [PMID:10092660]

12. Chen T, Lennon VA, Liu YU, Bosco DB, Li Y, Yi MH, Zhu J, Wei S, Wu LJ. (2020) Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest, 130 (8): 4025-4038. [PMID:32568214]

13. Dantas de Araujo A, Wu C, Wu KC, Reid RC, Durek T, Lim J, Fairlie DP. (2017) Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor. Bioconjug Chem, 28 (6): 1669-1676. [PMID:28562031]

14. Denonne F, Binet S, Burton M, Collart P, Defays S, Dipesa A, Eckert M, Giannaras A, Kumar S, Levine B et al.. (2007) Discovery of new C3aR ligands. Part 2: amino-piperidine derivatives. Bioorg Med Chem Lett, 17 (12): 3262-5. [PMID:17459702]

15. Ember JA, Johansen NL, Hugli TE. (1991) Designing synthetic superagonists of C3a anaphylatoxin. Biochemistry, 30 (15): 3603-12. [PMID:2015217]

16. Fischer WH, Hugli TE. (1997) Regulation of B cell functions by C3a and C3a(desArg): suppression of TNF-alpha, IL-6, and the polyclonal immune response. J Immunol, 159 (9): 4279-86. [PMID:9379023]

17. Gasque P, Singhrao SK, Neal JW, Götze O, Morgan BP. (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol, 150 (1): 31-41. [PMID:9006319]

18. Gasque P, Singhrao SK, Neal JW, Wang P, Sayah S, Fontaine M, Morgan BP. (1998) The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J Immunol, 160 (7): 3543-54. [PMID:9531317]

19. Guo Q, Subramanian H, Gupta K, Ali H. (2011) Regulation of C3a receptor signaling in human mast cells by G protein coupled receptor kinases. PLoS ONE, 6 (7): e22559. [PMID:21799898]

20. Halai R, Bellows-Peterson ML, Branchett W, Smadbeck J, Kieslich CA, Croker DE, Cooper MA, Morikis D, Woodruff TM, Floudas CA et al.. (2014) Derivation of ligands for the complement C3a receptor from the C-terminus of C5a. Eur J Pharmacol, 745: 176-81. [PMID:25446428]

21. Hannedouche S, Beck V, Leighton-Davies J, Beibel M, Roma G, Oakeley EJ, Lannoy V, Bernard J, Hamon J, Barbieri S et al.. (2013) Identification of the C3a receptor (C3AR1) as the target of the VGF-derived peptide TLQP-21 in rodent cells. J Biol Chem, 288 (38): 27434-43. [PMID:23940034]

22. Hartmann K, Henz BM, Krüger-Krasagakes S, Köhl J, Burger R, Guhl S, Haase I, Lippert U, Zuberbier T. (1997) C3a and C5a stimulate chemotaxis of human mast cells. Blood, 89 (8): 2863-70. [PMID:9108406]

23. Helske S, Oksjoki R, Lindstedt KA, Lommi J, Turto H, Werkkala K, Kupari M, Kovanen PT. (2008) Complement system is activated in stenotic aortic valves. Atherosclerosis, 196 (1): 190-200. [PMID:17498719]

24. Hollmann TJ, Haviland DL, Kildsgaard J, Watts K, Wetsel RA. (1998) Cloning, expression, sequence determination, and chromosome localization of the mouse complement C3a anaphylatoxin receptor gene. Mol Immunol, 35 (3): 137-48. [PMID:9694514]

25. Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, Brenner RE, Schneider M, Lambris JD, Huber-Lang M. (2011) Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem, 112 (9): 2594-605. [PMID:21598302]

26. Jinsmaa Y, Takenaka Y, Yoshikawa M. (2001) Designing of an orally active complement C3a agonist peptide with anti-analgesic and anti-amnesic activity. Peptides, 22 (1): 25-32. [PMID:11179594]

27. Kildsgaard J, Hollmann TJ, Matthews KW, Bian K, Murad F, Wetsel RA. (2000) Cutting edge: targeted disruption of the C3a receptor gene demonstrates a novel protective anti-inflammatory role for C3a in endotoxin-shock. J Immunol, 165 (10): 5406-9. [PMID:11067891]

28. Kwan WH, Hashimoto D, Paz-Artal E, Ostrow K, Greter M, Raedler H, Medof ME, Merad M, Heeger PS. (2012) Antigen-presenting cell-derived complement modulates graft-versus-host disease. J Clin Invest, 122 (6): 2234-8. [PMID:22585573]

29. Lajoie S, Lewkowich IP, Suzuki Y, Clark JR, Sproles AA, Dienger K, Budelsky AL, Wills-Karp M. (2010) Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol, 11 (10): 928-35. [PMID:20802484]

30. Li XX, Kumar V, Clark RJ, Lee JD, Woodruff TM. (2020) The "C3aR Antagonist" SB290157 is a Partial C5aR2 Agonist. Front Pharmacol, 11: 591398. [PMID:33551801]

31. Lim R, Lappas M. (2012) Decreased expression of complement 3a receptor (C3aR) in human placentas from severe preeclamptic pregnancies. Eur J Obstet Gynecol Reprod Biol, 165 (2): 194-8. [PMID:22901903]

32. Mathieu MC, Sawyer N, Greig GM, Hamel M, Kargman S, Ducharme Y, Lau CK, Friesen RW, O'Neill GP, Gervais FG et al.. (2005) The C3a receptor antagonist SB 290157 has agonist activity. Immunol Lett, 100 (2): 139-45. [PMID:16154494]

33. Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC. (2003) Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J, 17 (9): 1003-14. [PMID:12773483]

34. Niebuhr M, Bäumer W, Kietzmann M, Wichmann K, Heratizadeh A, Werfel T. (2012) Participation of complement 3a receptor (C3aR) in the sensitization phase of Th2 mediated allergic contact dermatitis. Exp Dermatol, 21 (1): 52-6. [PMID:22151392]

35. Ohinata K, Inui A, Asakawa A, Wada K, Wada E, Yoshikawa M. (2002) Albutensin A and complement C3a decrease food intake in mice. Peptides, 23 (1): 127-33. [PMID:11814627]

36. Peng Q, Li K, Anderson K, Farrar CA, Lu B, Smith RA, Sacks SH, Zhou W. (2008) Local production and activation of complement up-regulates the allostimulatory function of dendritic cells through C3a-C3aR interaction. Blood, 111 (4): 2452-61. [PMID:18056835]

37. Purwar R, Wittmann M, Zwirner J, Oppermann M, Kracht M, Dittrich-Breiholz O, Gutzmer R, Werfel T. (2006) Induction of C3 and CCL2 by C3a in keratinocytes: a novel autocrine amplification loop of inflammatory skin reactions. J Immunol, 177 (7): 4444-50. [PMID:16982879]

38. Quell KM, Karsten CM, Kordowski A, Almeida LN, Briukhovetska D, Wiese AV, Sun J, Ender F, Antoniou K, Schröder T et al.. (2017) Monitoring C3aR Expression Using a Floxed tdTomato-C3aR Reporter Knock-in Mouse. J Immunol, 199 (2): 688-706. [PMID:28626064]

39. Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, Zwirner J, Wetsel RA, Gerard C, Pekny M et al.. (2006) Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J, 25 (6): 1364-74. [PMID:16498410]

40. Reid RC, Yau MK, Singh R, Hamidon JK, Lim J, Stoermer MJ, Fairlie DP. (2014) Potent heterocyclic ligands for human complement c3a receptor. J Med Chem, 57 (20): 8459-70. [PMID:25259874]

41. Reid RC, Yau MK, Singh R, Hamidon JK, Reed AN, Chu P, Suen JY, Stoermer MJ, Blakeney JS, Lim J et al.. (2013) Downsizing a human inflammatory protein to a small molecule with equal potency and functionality. Nat Commun, 4: 2802. [PMID:24257095]

42. Rowley JA, Reid RC, Poon EKY, Wu KC, Lim J, Lohman RJ, Hamidon JK, Yau MK, Halili MA, Durek T et al.. (2020) Potent Thiophene Antagonists of Human Complement C3a Receptor with Anti-Inflammatory Activity. J Med Chem, 63 (2): 529-541. [PMID:31910011]

43. Sayah S, Jauneau AC, Patte C, Tonon MC, Vaudry H, Fontaine M. (2003) Two different transduction pathways are activated by C3a and C5a anaphylatoxins on astrocytes. Brain Res Mol Brain Res, 112 (1-2): 53-60. [PMID:12670702]

44. Schraufstatter IU, Discipio RG, Zhao M, Khaldoyanidi SK. (2009) C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. J Immunol, 182 (6): 3827-36. [PMID:19265162]

45. Scully CC, Blakeney JS, Singh R, Hoang HN, Abbenante G, Reid RC, Fairlie DP. (2010) Selective hexapeptide agonists and antagonists for human complement C3a receptor. J Med Chem, 53 (13): 4938-48. [PMID:20527893]

46. Shinjyo N, Ståhlberg A, Dragunow M, Pekny M, Pekna M. (2009) Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells, 27 (11): 2824-32. [PMID:19785034]

47. Strainic MG, Liu J, Huang D, An F, Lalli PN, Muqim N, Shapiro VS, Dubyak GR, Heeger PS, Medof ME. (2008) Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity, 28 (3): 425-35. [PMID:18328742]

48. Sünderhauf A, Skibbe K, Preisker S, Ebbert K, Verschoor A, Karsten CM, Kemper C, Huber-Lang M, Basic M, Bleich A et al.. (2017) Regulation of epithelial cell expressed C3 in the intestine - Relevance for the pathophysiology of inflammatory bowel disease?. Mol Immunol, 90: 227-238. [PMID:28843904]

49. Takafuji S, Tadokoro K, Ito K, Dahinden CA. (1994) Degranulation from human eosinophils stimulated with C3a and C5a. Int Arch Allergy Immunol, 104 Suppl 1 (1): 27-9. [PMID:8156000]

50. Takahashi M, Moriguchi S, Suganuma H, Shiota A, Tani F, Usui H, Kurahashi K, Sasaki R, Yoshikawa M. (1997) Identification of casoxin C, an ileum-contracting peptide derived from bovine kappa-casein, as an agonist for C3a receptors. Peptides, 18 (3): 329-36. [PMID:9145417]

51. Takahashi M, Moriguchi S, Yoshikawa M, Sasaki R. (1994) Isolation and characterization of oryzatensin: a novel bioactive peptide with ileum-contracting and immunomodulating activities derived from rice albumin. Biochem Mol Biol Int, 33 (6): 1151-8. [PMID:7804141]

52. Tokodai K, Goto M, Inagaki A, Imura T, Nakanishi W, Satomi S. (2011) Expression of receptors for anaphylatoxins C3a and C5a on rat islet preparations. Transplant Proc, 43 (9): 3179-80. [PMID:22099750]

53. Venkatesha RT, Berla Thangam E, Zaidi AK, Ali H. (2005) Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Mol Immunol, 42 (5): 581-7. [PMID:15607817]

54. Vibhuti A, Gupta K, Subramanian H, Guo Q, Ali H. (2011) Distinct and shared roles of β-arrestin-1 and β-arrestin-2 on the regulation of C3a receptor signaling in human mast cells. PLoS ONE, 6 (5): e19585. [PMID:21589858]

55. Wende E, Laudeley R, Bleich A, Bleich E, Wetsel RA, Glage S, Klos A. (2013) The complement anaphylatoxin C3a receptor (C3aR) contributes to the inflammatory response in dextran sulfate sodium (DSS)-induced colitis in mice. PLoS ONE, 8 (4): e62257. [PMID:23638016]

56. Wenderfer SE, Wang H, Ke B, Wetsel RA, Braun MC. (2009) C3a receptor deficiency accelerates the onset of renal injury in the MRL/lpr mouse. Mol Immunol, 46 (7): 1397-404. [PMID:19167760]

57. Wu MC, Brennan FH, Lynch JP, Mantovani S, Phipps S, Wetsel RA, Ruitenberg MJ, Taylor SM, Woodruff TM. (2013) The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization. Proc Natl Acad Sci USA, 110 (23): 9439-44. [PMID:23696668]

58. Yoshikawa M. (2015) Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides, 72: 208-25. [PMID:26297549]

59. Yu M, Zou W, Peachey NS, McIntyre TM, Liu J. (2012) A novel role of complement in retinal degeneration. Invest Ophthalmol Vis Sci, 53 (12): 7684-92. [PMID:23074214]

Contributors

Show »

How to cite this page