Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Mammalian bombesin (Bn) receptors comprise 3 subtypes: BB1, BB2, BB3 (nomenclature recommended by the NC-IUPHAR Subcommittee on bombesin receptors, [1,14]). BB1 and BB2 are activated by the endogenous ligands neuromedin B (NMB, P08949) (NMB), gastrin-releasing peptide (GRP, P07492) (GRP), and GRP-(18-27) (GRP, P07492). Bombesin is a tetra-decapeptide, originally derived from amphibians and structurally closely related to GRP. The three Bn receptor subtypes couple primarily to the Gq/11 and G12/13 family of G proteins [14]. Each of these receptors is widely distributed in the CNS and peripheral tissues [9,13-14,22-23,43,47,51,60]. Activation of BB1 and BB2 receptors causes a wide range of physiological/pathophysiogical actions, including the stimulation of normal and neoplastic tissue growth, smooth-muscle contraction, respiration, gastrointestinal motility, feeding behavior, secretion and many central nervous system effects including regulation of circadian rhythm, body temperature control, sighing, behavioral disorders and mediation of pruritus [4-5,7,14,20,35,38-39,44,47,53,58]. BB3 is an orphan receptor, although some propose it is constitutively active [54]. BB3 receptor knockout studies show it has important roles in glucose and insulin regulation, metabolic homeostasis, feeding, regulation of body temperature, obesity, diabetes mellitus and growth of normal/neoplastic tissues [9,19,25,36,41,59]. Bn receptors are one of the most frequently overexpressed receptors in cancers and are receiving increased attention for their roles in tumor growth, as well as for tumour imaging and for receptor-targeted cytotoxicity [2,16,24,26-27,33,38,50]. Bn receptors are also receiving attention because they are one of the primary neurotransmitters for pruritus [4-5,15,53].
BB1 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
BB2 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||||||||||
BB3 receptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
Bédard T, Mountney C, Kent P, Anisman H, Merali Z. (2007) Role of gastrin-releasing peptide and neuromedin B in anxiety and fear-related behavior. Behav Brain Res, 179 (1): 133-40. [PMID:17335915]
Carrieri A, Lacivita E, Belviso BD, Caliandro R, Mastrorilli P, Gallo V, Niso M, Leopoldo M. (2017) Structural Determinants in the Binding of BB2 Receptor Ligands: In Silico, X-Ray and NMR Studies in PD176252 Analogues. Curr Top Med Chem, 17 (14): 1599-1610. [PMID:27823569]
Chen XJ, Sun YG. (2020) Central circuit mechanisms of itch. Nat Commun, 11 (1): 3052. [PMID:32546780]
* Chen ZF. (2021) A neuropeptide code for itch. Nat Rev Neurosci, 22 (12): 758-776. [PMID:34663954]
Dalm SU, Schrijver WA, Sieuwerts AM, Look MP, Ziel-van der Made AC, de Weerd V, Martens JW, van Diest PJ, de Jong M, van Deurzen CH. (2017) Prospects of Targeting the Gastrin Releasing Peptide Receptor and Somatostatin Receptor 2 for Nuclear Imaging and Therapy in Metastatic Breast Cancer. PLoS ONE, 12 (1): e0170536. [PMID:28107508]
Ferreira CA, Fuscaldi LL, Townsend DM, Rubello D, Barros AL. (2017) Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother, 87: 58-72. [PMID:28040598]
González N, Moreno P, Jensen RT. (2015) Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin Ther Targets, 19 (9): 1153-70. [PMID:26066663]
Guo M, Qu X, Qin XQ. (2015) Bombesin-like peptides and their receptors: recent findings in pharmacology and physiology. Curr Opin Endocrinol Diabetes Obes, 22 (1): 3-8. [PMID:25517020]
* Jensen RT, Battey JF, Spindel ER, Benya RV. (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev, 60 (1): 1-42. [PMID:18055507]
Jensen RT, Moody TW. (2013) Bombesin Peptides (Cancer). In Handbook of Biologically Active Peptides. 2nd Revised edition. Edited by Kastin AJ (Elsevier) 506-511. [ISBN:9780123850959]
Jensen RT, Moody TW. (2013) Bombesin-Related Peptides. In Handbook of Biologically Active Peptides. 2nd Revised edition. Edited by Kastin AJ (Elsevier) 1188-1196. [ISBN:9780123850959]
* Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. (2022) GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin, 61 (3): 247-261. [PMID:35668669]
Ladenheim EE. (2013) Bombesin. In Handbook of Biologically Active Peptides. 2nd Revised edition. Edited by Kastin AJ (Elsevier) 1064-1070. [ISBN:9780123850959]
* Li M, Liang P, Liu D, Yuan F, Chen GC, Zhang L, Liu Y, Liu H. (2019) Bombesin Receptor Subtype-3 in Human Diseases. Arch Med Res, 50 (7): 463-467. [PMID:31911345]
Maina T, Nock BA, Kulkarni H, Singh A, Baum RP. (2017) Theranostic Prospects of Gastrin-Releasing Peptide Receptor-Radioantagonists in Oncology. PET Clin, 12 (3): 297-309. [PMID:28576168]
* Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T. (2021) Radiolabeled Bombesin Analogs. Cancers (Basel), 13 (22). [PMID:34830920]
* Moody TW, Lee L, Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. (2021) Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne), 12: 728088. [PMID:34539578]
Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. (2016) Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets, 20 (9): 1055-73. [PMID:26981612]
* Qin X, Qu X. (2021) Recent advances in the biology of bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes, 28 (2): 232-237. [PMID:33394718]
Qu X, Wang H, Liu R. (2018) Recent insights into biological functions of mammalian bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes, 25 (1): 36-41. [PMID:29120926]
* Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. (2015) Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides, 72: 128-44. [PMID:25976083]
Rick FG, Abi-Chaker A, Szalontay L, Perez R, Jaszberenyi M, Jayakumar AR, Shamaladevi N, Szepeshazi K, Vidaurre I, Halmos G et al.. (2013) Shrinkage of experimental benign prostatic hyperplasia and reduction of prostatic cell volume by a gastrin-releasing peptide antagonist. Proc Natl Acad Sci USA, 110 (7): 2617-22. [PMID:23359692]
Roesler R, Schwartsmann G. (2012) Gastrin-releasing peptide receptors in the central nervous system: role in brain function and as a drug target. Front Endocrinol (Lausanne), 3: 159. [PMID:23251133]
Sayegh AI. (2013) The role of bombesin and bombesin-related peptides in the short-term control of food intake. Prog Mol Biol Transl Sci, 114: 343-70. [PMID:23317790]
Shafik NF, Rahoma M, Elshimy RA, M Abou El kasem F. (2016) Prognostic Value of Prepro-Gastrin Releasing Peptide in Lung Cancer Patients; NCI-Prospective Study. Asian Pac J Cancer Prev, 17 (12): 6079-6083. [PMID:28124884]
Weber HC. (2015) Gastrointestinal peptides and itch sensation. Curr Opin Endocrinol Diabetes Obes, 22 (1): 29-33. [PMID:25485517]
Zhang J, Li D, Lang L, Zhu Z, Wang L, Wu P, Niu G, Li F, Chen X. (2016) 68Ga-NOTA-Aca-BBN(7-14) PET/CT in Healthy Volunteers and Glioma Patients. J Nucl Med, 57 (1): 9-14. [PMID:26449838]
1. Alexander SP, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD et al.. (2021) THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors. Br J Pharmacol, 178 Suppl 1: S27-S156. [PMID:34529832]
2. Baratto L, Duan H, Mäcke H, Iagaru A. (2020) Imaging the Distribution of Gastrin-Releasing Peptide Receptors in Cancer. J Nucl Med, 61 (6): 792-798. [PMID:32060215]
3. Benya RV, Kusui T, Pradhan TK, Battey JF, Jensen RT. (1995) Expression and characterization of cloned human bombesin receptors. Mol Pharmacol, 47 (1): 10-20. [PMID:7838118]
4. Chen XJ, Sun YG. (2020) Central circuit mechanisms of itch. Nat Commun, 11 (1): 3052. [PMID:32546780]
5. Chen ZF. (2021) A neuropeptide code for itch. Nat Rev Neurosci, 22 (12): 758-776. [PMID:34663954]
6. Chobanian HR, Guo Y, Liu P, Chioda M, Lanza Jr TJ, Chang L, Kelly TM, Kan Y, Palyha O, Guan XM et al.. (2012) Discovery of MK-7725, A Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Obesity. ACS Med Chem Lett, 3 (3): 252-6. [PMID:24900461]
7. Gajjar S, Patel BM. (2017) Neuromedin: An insight into its types, receptors and therapeutic opportunities. Pharmacol Rep, 69 (3): 438-447. [PMID:28315588]
8. González N, Mantey SA, Pradhan TK, Sancho V, Moody TW, Coy DH, Jensen RT. (2009) Characterization of putative GRP- and NMB-receptor antagonist's interaction with human receptors. Peptides, 30 (8): 1473-86. [PMID:19463875]
9. González N, Moreno P, Jensen RT. (2015) Bombesin receptor subtype 3 as a potential target for obesity and diabetes. Expert Opin Ther Targets, 19 (9): 1153-70. [PMID:26066663]
10. Guan XM, Chen H, Dobbelaar PH, Dong Y, Fong TM, Gagen K, Gorski J, He S, Howard AD, Jian T et al.. (2010) Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metab, 11 (2): 101-12. [PMID:20096642]
11. He S, Dobbelaar PH, Liu J, Jian T, Sebhat IK, Lin LS, Goodman A, Guo C, Guzzo PR, Hadden M et al.. (2010) Discovery of substituted biphenyl imidazoles as potent, bioavailable bombesin receptor subtype-3 agonists. Bioorg Med Chem Lett, 20 (6): 1913-7. [PMID:20167483]
12. Hoppenz P, Els-Heindl S, Beck-Sickinger AG. (2019) Identification and stabilization of a highly selective gastrin-releasing peptide receptor agonist. J Pept Sci, 25 (12): e3224. [PMID:31743956]
13. Jennings CA, Harrison DC, Maycox PR, Crook B, Smart D, Hervieu GJ. (2003) The distribution of the orphan bombesin receptor subtype-3 in the rat CNS. Neuroscience, 120 (2): 309-24. [PMID:12890504]
14. Jensen RT, Battey JF, Spindel ER, Benya RV. (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev, 60 (1): 1-42. [PMID:18055507]
15. Kiguchi N, Ding H, Park SH, Mabry KM, Kishioka S, Shiozawa Y, Alfonso Romero-Sandoval E, Peters CM, Ko MC. (2022) Functional roles of neuromedin B and gastrin-releasing peptide in regulating itch and pain in the spinal cord of non-human primates. Biochem Pharmacol, 198: 114972. [PMID:35189108]
16. Kurth J, Potratz M, Heuschkel M, Krause BJ, Schwarzenböck SM. (2022) GRPr Theranostics: Current Status of Imaging and Therapy using GRPr Targeting Radiopharmaceuticals. Nuklearmedizin, 61 (3): 247-261. [PMID:35668669]
17. Kähkönen E, Jambor I, Kemppainen J, Lehtiö K, Grönroos TJ, Kuisma A, Luoto P, Sipilä HJ, Tolvanen T, Alanen K et al.. (2013) In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res, 19 (19): 5434-43. [PMID:23935037]
18. Leban JJ, Kull Jr FC, Landavazo A, Stockstill B, McDermed JD. (1993) Development of potent gastrin-releasing peptide antagonists having a D-Pro-psi(CH2NH)-Phe-NH2 C terminus. Proc Natl Acad Sci USA, 90 (5): 1922-6. [PMID:8446610]
19. Li M, Liang P, Liu D, Yuan F, Chen GC, Zhang L, Liu Y, Liu H. (2019) Bombesin Receptor Subtype-3 in Human Diseases. Arch Med Res, 50 (7): 463-467. [PMID:31911345]
20. Li P, Janczewski WA, Yackle K, Kam K, Pagliardini S, Krasnow MA, Feldman JL. (2016) The peptidergic control circuit for sighing. Nature, 530 (7590): 293-297. [PMID:26855425]
21. Llinares M, Devin C, Chaloin O, Azay J, Noel-Artis AM, Bernad N, Fehrentz JA, Martinez J. (1999) Syntheses and biological activities of potent bombesin receptor antagonists. J Pept Res, 53 (3): 275-83. [PMID:10231715]
22. Ma Z, Su J, Guo T, Jin M, Li X, Lei Z, Hou Y, Li X, Jia C, Zhang Z et al.. (2016) Neuromedin B and Its Receptor: Gene Cloning, Tissue Distribution and Expression Levels of the Reproductive Axis in Pigs. PLoS ONE, 11 (3): e0151871. [PMID:27010315]
23. Ma Z, Zhang Y, Su J, Li X, Yang S, Qiao W, Suo C, Lei Z. (2018) Distribution of the pig gastrin-releasing peptide receptor and the effect of GRP on porcine Leydig cells. Peptides, 99: 142-152. [PMID:28966141]
24. Maina T, Nock BA. (2017) From Bench to Bed: New Gastrin-Releasing Peptide Receptor-Directed Radioligands and Their Use in Prostate Cancer. PET Clin, 12 (2): 205-217. [PMID:28267454]
25. Majumdar ID, Weber HC. (2012) Biology and pharmacology of bombesin receptor subtype-3. Curr Opin Endocrinol Diabetes Obes, 19 (1): 3-7. [PMID:22157398]
26. Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T. (2021) Radiolabeled Bombesin Analogs. Cancers (Basel), 13 (22). [PMID:34830920]
27. Mansi R, Wang X, Forrer F, Waser B, Cescato R, Graham K, Borkowski S, Reubi JC, Maecke HR. (2011) Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours. Eur J Nucl Med Mol Imaging, 38 (1): 97-107. [PMID:20717822]
28. Mantey S, Frucht H, Coy DH, Jensen RT. (1993) Characterization of bombesin receptors using a novel, potent, radiolabeled antagonist that distinguishes bombesin receptor subtypes. Mol Pharmacol, 43 (5): 762-74. [PMID:7684815]
29. Mantey SA, Coy DH, Entsuah LK, Jensen RT. (2004) Development of bombesin analogs with conformationally restricted amino acid substitutions with enhanced selectivity for the orphan receptor human bombesin receptor subtype 3. J Pharmacol Exp Ther, 310 (3): 1161-70. [PMID:15102928]
30. Mantey SA, Weber HC, Sainz E, Akeson M, Ryan RR, Pradhan TK, Searles RP, Spindel ER, Battey JF, Coy DH et al.. (1997) Discovery of a high affinity radioligand for the human orphan receptor, bombesin receptor subtype 3, which demonstrates that it has a unique pharmacology compared with other mammalian bombesin receptors. J Biol Chem, 272 (41): 26062-71. [PMID:9325344]
31. Matsufuji T, Shimada K, Kobayashi S, Ichikawa M, Kawamura A, Fujimoto T, Arita T, Hara T, Konishi M, Abe-Ohya R et al.. (2015) Synthesis and biological evaluation of novel chiral diazepine derivatives as bombesin receptor subtype-3 (BRS-3) agonists incorporating an antedrug approach. Bioorg Med Chem, 23 (1): 89-104. [PMID:25497965]
32. Matsufuji T, Shimada K, Kobayashi S, Kawamura A, Fujimoto T, Arita T, Hara T, Konishi M, Abe-Ohya R, Izumi M et al.. (2014) Discovery of novel chiral diazepines as bombesin receptor subtype-3 (BRS-3) agonists with low brain penetration. Bioorg Med Chem Lett, 24 (3): 750-5. [PMID:24412111]
33. Moody TW, Lee L, Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. (2021) Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front Endocrinol (Lausanne), 12: 728088. [PMID:34539578]
34. Moody TW, Mantey SA, Moreno P, Nakamura T, Lacivita E, Leopoldo M, Jensen RT. (2015) ML-18 is a non-peptide bombesin receptor subtype-3 antagonist which inhibits lung cancer growth. Peptides, 64: 55-61. [PMID:25554218]
35. Moody TW, Merali Z. (2004) Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides, 25: 511-520. [PMID:15134870]
36. Moreno P, Mantey SA, Lee SH, Ramos-Álvarez I, Moody TW, Jensen RT. (2018) A possible new target in lung-cancer cells: The orphan receptor, bombesin receptor subtype-3. Peptides, 101: 213-226. [PMID:29410320]
37. Moreno P, Mantey SA, Nuche-Berenguer B, Reitman ML, Gonzalez N, , Coy DH, Jensen RT. (2013) Comparative Pharmacology of Bombesin Receptor Subtype-3, Nonpeptide Agonist MK-5046, a Universal Peptide Agonist, and Peptide Antagonist Bantag-1 for Human Bombesin Receptors. Pharmacol Exp Therap, 347 (1): 100-116. [PMID:23892571]
38. Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. (2016) Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin Ther Targets, 20 (9): 1055-73. [PMID:26981612]
39. Morgado-Valle C, Smith JC, Fernandez-Ruiz J, Lopez-Meraz L, Beltran-Parrazal L. (2023) Modulation of inspiratory burst duration and frequency by bombesin in vitro. Pflugers Arch, 475 (1): 101-117. [PMID:35066612]
40. Ohki-Hamazaki H. (2000) Neuromedin B. Prog Neurobiol, 62 (3): 297-312. [PMID:10840151]
41. Ohki-Hamazaki H, Watase K, Yamamoto K, Ogura H, Yamano M, Yamada K, Maeno H, Imaki J, Kikuyama S, Wada E et al.. (1997) Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature, 390 (6656): 165-9. [PMID:9367152]
42. Peng S, Zhan Y, Zhang D, Ren L, Chen A, Chen ZF, Zhang H. (2023) Structures of human gastrin-releasing peptide receptors bound to antagonist and agonist for cancer and itch therapy. Proc Natl Acad Sci U S A, 120 (6): e2216230120. [PMID:36724251]
43. Porcher C, Juhem A, Peinnequin A, Bonaz B. (2005) Bombesin receptor subtype-3 is expressed by the enteric nervous system and by interstitial cells of Cajal in the rat gastrointestinal tract. Cell Tissue Res, 320 (1): 21-31. [PMID:15726424]
44. Qu X, Wang H, Liu R. (2018) Recent insights into biological functions of mammalian bombesin-like peptides and their receptors. Curr Opin Endocrinol Diabetes Obes, 25 (1): 36-41. [PMID:29120926]
45. Ramos-Alvarez I, Iordanskaia T, Mantey SA, Jensen RT. (2022) The Nonpeptide Agonist MK-5046 Functions As an Allosteric Agonist for the Bombesin Receptor Subtype-3. J Pharmacol Exp Ther, 382 (2): 66-78. [PMID:35644465]
46. Ramos-Alvarez I, Lee L, Mantey SA, Jensen RT. (2019) Development and Characterization of a Novel, High-Affinity, Specific, Radiolabeled Ligand for BRS-3 Receptors. J Pharmacol Exp Ther, 369 (3): 454-465. [PMID:30971479]
47. Ramos-Álvarez I, Moreno P, Mantey SA, Nakamura T, Nuche-Berenguer B, Moody TW, Coy DH, Jensen RT. (2015) Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides, 72: 128-44. [PMID:25976083]
48. Ramos-Álvarez I, Nakamura T, Mantey SA, Moreno P, Nuche-Berenguer B, Jensen RT. (2016) Novel chiral-diazepines function as specific, selective receptor agonists with variable coupling and species variability in human, mouse and rat BRS-3 receptor cells. Peptides, 75: 8-17. [PMID:26524625]
49. Ryan RR, Katsuno T, Mantey SA, Pradhan TK, Weber HC, Coy DH, Battey JF, Jensen RT. (1999) Comparative pharmacology of the nonpeptide neuromedin B receptor antagonist PD 168368. J Pharmacol Exp Ther, 290 (3): 1202-11. [PMID:10454496]
50. Sancho V, Di Florio A, Moody TW, Jensen RT. (2011) Bombesin receptor-mediated imaging and cytotoxicity: review and current status. Curr Drug Deliv, 8 (1): 79-134. [PMID:21034419]
51. Sano H, Feighner SD, Hreniuk DL, Iwaasa H, Sailer AW, Pan J, Reitman ML, Kanatani A, Howard AD, Tan CP. (2004) Characterization of the bombesin-like peptide receptor family in primates. Genomics, 84 (1): 139-46. [PMID:15203211]
52. Sebhat IK, Franklin C, Lo MM, Chen D, Jewell JP, Miller R, Pang J, Palyha O, Kan Y, Kelly TM et al.. (2011) Discovery of MK-5046, a Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Obesity. ACS Med Chem Lett, 2 (1): 43-7. [PMID:24900253]
53. Sun YG, Chen ZF. (2007) A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature, 448 (7154): 700-3. [PMID:17653196]
54. Tang H, Shu C, Chen H, Zhang X, Zang Z, Deng C. (2019) Constitutively active BRS3 is a genuinely orphan GPCR in placental mammals. PLoS Biol, 17 (3): e3000175. [PMID:30840614]
55. Tokita K, Katsuno T, Hocart SJ, Coy DH, Llinares M, Martinez J, Jensen RT. (2001) Molecular basis for selectivity of high affinity peptide antagonists for the gastrin-releasing peptide receptor. J Biol Chem, 276 (39): 36652-63. [PMID:11463790]
56. Uehara H, González N, Sancho V, Mantey SA, Nuche-Berenguer B, Pradhan T, Coy DH, Jensen RT. (2011) Pharmacology and selectivity of various natural and synthetic bombesin related peptide agonists for human and rat bombesin receptors differs. Peptides, 32 (8): 1685-99. [PMID:21729729]
57. Wada E, Way J, Shapira H, Kusano K, Lebacq-Verheyden AM, Coy D, Jensen R, Battery J. (1991) cDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor. Neuron, 6 (3): 421-30. [PMID:1848080]
58. Wan L, Jin H, Liu XY, Jeffry J, Barry DM, Shen KF, Peng JH, Liu XT, Jin JH, Sun Y et al.. (2017) Distinct roles of NMB and GRP in itch transmission. Sci Rep, 7 (1): 15466. [PMID:29133874]
59. Xiao C, Reitman ML. (2016) Bombesin-Like Receptor 3: Physiology of a Functional Orphan. Trends Endocrinol Metab, 27 (9): 603-5. [PMID:27055378]
60. Zhang L, Parks GS, Wang Z, Wang L, Lew M, Civelli O. (2013) Anatomical characterization of bombesin receptor subtype-3 mRNA expression in the rodent central nervous system. J Comp Neurol, 521 (5): 1020-39. [PMID:22911445]
Subcommittee members:
Robert T. Jensen (Chairperson)
Jim Battey
Richard V. Benya
Terry W. Moody |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
All three human subtypes may be activated by [D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) [30]. The Agonist [D-Tyr6,Apa-4Cl11,Phe13,Nle14]bombesin-(6-14) has more than 200-fold selectivity for BB3 receptors over BB1 and BB2 [29-30,47,47-48]. A recent study [45] shows MK-5046 is functioning as an allosteric agonist for hBRS-3 (the first for any BnR). A further recent study reports for the first time, the inactive crystal structure of hGRPR (BB2) as well as two active state GRPR structures bound to GRP or [D-Phe6,β-Ala11,Phe13,Nle14]bombesin-(6-14) [42].