Top ▲
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Show »« Hide More detailed introduction
Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid Receptors [3,17,28,43]) are activated by the endogenous phospholipid LPA. The first receptor, LPA1, was identified as ventricular zone gene-1 (vzg-1) [10], This discovery represented the beginning of the de-orphanisation of members of the endothelial differentiation gene (edg) family, as other LPA and sphingosine 1-phosphate (S1P) receptors were found. Five additional LPA receptors (LPA2,3,4,5,6) have since been identified [28] and their gene nomenclature codified for human LPAR1, LPAR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and Lpar1, Lpar2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function of their corresponding proteins. The crystal structure of LPA1 [1-2,26] and LPA6 [39] are solved and indicate that LPA accesses the extracellular binding pocket, consistent with its proposed delivery via autotaxin [2]. These studies have also implicated cross-talk with endocannabinoids via phosphorylated intermediates that can also activate these receptors. The binding affinities to LPA1 of unlabeled, natural LPA and anandamide phosphate (AEAp) were measured using backscattering interferometry (pKd = 9) [29,36]. Utilization of this method indicated affinities that were 77-fold lower than when measured using radioactivity-based protocols [42]. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Multiple groups have independently published validation of all six LPA receptors described in these tables, and further validation was achieved using a distinct read-out via a novel TGFα "shedding* assay [13]. LPA has been proposed to be a ligand for GPR35 [34], supported by a study revealing that LPA modulates macrophage function through GPR35 [15]. However chemokine (C-X-C motif) ligand 17 (CXCL17 (CXCL17, Q6UXB2)) is reported to be a ligand for GPR35/CXCR8 [27]. Moreover, LPA has also been described as an agonist for the transient receptor potential (Trp) ion channels TRPV1 [31] and TRPA1 [19]. All of these proposed non-GPCR receptor identities require confirmation and are not currently recognized as bona fide LPA receptors.
LPA1 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||
LPA2 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||
LPA3 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||
LPA4 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||
LPA5 receptor C Show summary »« Hide summary More detailed page
|
||||||||||||||||||||||||||||
LPA6 receptor C Show summary »« Hide summary More detailed page
|
* Key recommended reading is highlighted with an asterisk
Blaho VA, Hla T. (2011) Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev, 111 (10): 6299-320. [PMID:21939239]
Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol, 50: 157-86. [PMID:20055701]
* Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev, 62 (4): 579-87. [PMID:21079037]
* Kihara Y, Maceyka M, Spiegel S, Chun J. (2014) Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol, 171 (15): 3575-94. [PMID:24602016]
* Mizuno H, Kihara Y. (2020) Druggable Lipid GPCRs: Past, Present, and Prospects. Adv Exp Med Biol, 1274: 223-258. [PMID:32894513]
Sheng X, Yung YC, Chen A, Chun J. (2015) Lysophosphatidic acid signalling in development. Development, 142 (8): 1390-5. [PMID:25852197]
Yanagida K, Ishii S. (2011) Non-Edg family LPA receptors: the cutting edge of LPA research. J Biochem, 150 (3): 223-32. [PMID:21746769]
Yung YC, Stoddard NC, Chun J. (2014) LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res, 55 (7): 1192-1214. [PMID:24643338]
* Yung YC, Stoddard NC, Mirendil H, Chun J. (2015) Lysophosphatidic Acid signaling in the nervous system. Neuron, 85 (4): 669-82. [PMID:25695267]
1. Akasaka H, Tanaka T, Sano FK, Matsuzaki Y, Shihoya W, Nureki O. (2022) Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist. Nat Commun, 13 (1): 5417. [PMID:36109516]
2. Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y, Warshaviak D, Nakade S, Asmar-Rovira G, Mileni M et al.. (2015) Crystal Structure of Antagonist Bound Human Lysophosphatidic Acid Receptor 1. Cell, 161 (7): 1633-43. [PMID:26091040]
3. Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR et al.. (2013) International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev, 65 (3): 967-86. [PMID:23686350]
4. Fells JI, Tsukahara R, Fujiwara Y, Liu J, Perygin DH, Osborne DA, Tigyi G, Parrill AL. (2008) Identification of non-lipid LPA3 antagonists by virtual screening. Bioorg Med Chem, 16 (11): 6207-17. [PMID:18467108]
5. Fells JI, Tsukahara R, Liu J, Tigyi G, Parrill AL. (2009) Structure-based drug design identifies novel LPA3 antagonists. Bioorg Med Chem, 17 (21): 7457-64. [PMID:19800804]
6. Fischer DJ, Nusser N, Virag T, Yokoyama K, Wang Da, Baker DL, Bautista D, Parrill AL, Tigyi G. (2001) Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol Pharmacol, 60 (4): 776-84. [PMID:11562440]
7. González-Gil I, Zian D, Vázquez-Villa H, Hernández-Torres G, Martínez RF, Khiar-Fernández N, Rivera R, Kihara Y, Devesa I, Mathivanan S et al.. (2020) A Novel Agonist of the Type 1 Lysophosphatidic Acid Receptor (LPA1), UCM-05194, Shows Efficacy in Neuropathic Pain Amelioration. J Med Chem, 63 (5): 2372-2390. [PMID:31790581]
8. Hasegawa Y, Erickson JR, Goddard GJ, Yu S, Liu S, Cheng KW, Eder A, Bandoh K, Aoki J, Jarosz R et al.. (2003) Identification of a phosphothionate analogue of lysophosphatidic acid (LPA) as a selective agonist of the LPA3 receptor. J Biol Chem, 278 (14): 11962-9. [PMID:12554733]
9. Heasley BH, Jarosz R, Lynch KR, Macdonald TL. (2004) Initial structure-activity relationships of lysophosphatidic acid receptor antagonists: discovery of a high-affinity LPA1/LPA3 receptor antagonist. Bioorg Med Chem Lett, 14 (11): 2735-40. [PMID:15125924]
10. Hecht JH, Weiner JA, Post SR, Chun J. (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol, 135 (4): 1071-83. [PMID:8922387]
11. Heise CE, Santos WL, Schreihofer AM, Heasley BH, Mukhin YV, Macdonald TL, Lynch KR. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol Pharmacol, 60 (6): 1173-80. [PMID:11723223]
12. Herr KJ, Herr DR, Lee CW, Noguchi K, Chun J. (2011) Stereotyped fetal brain disorganization is induced by hypoxia and requires lysophosphatidic acid receptor 1 (LPA1) signaling. Proc Natl Acad Sci USA, 108 (37): 15444-9. [PMID:21878565]
13. Inoue A, Ishiguro J, Kitamura H, Arima N, Okutani M, Shuto A, Higashiyama S, Ohwada T, Arai H, Makide K et al.. (2012) TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nat Methods, 9 (10): 1021-9. [PMID:22983457]
14. Kawamoto Y, Seo R, Murai N, Hiyama H, Oka H. (2018) Identification of potent lysophosphatidic acid receptor 5 (LPA5) antagonists as potential analgesic agents. Bioorg Med Chem, 26 (1): 257-265. [PMID:29208511]
15. Kaya B, Doñas C, Wuggenig P, Diaz OE, Morales RA, Melhem H, Swiss IBD. Cohort Investigators, Hernández PP, Kaymak T, Das S et al.. (2020) Lysophosphatidic Acid-Mediated GPR35 Signaling in CX3CR1+ Macrophages Regulates Intestinal Homeostasis. Cell Rep, 32 (5): 107979. [PMID:32755573]
16. Khiar-Fernández N, Zian D, Vázquez-Villa H, Martínez RF, Escobar-Peña A, Foronda-Sainz R, Ray M, Puigdomenech-Poch M, Cincilla G, Sánchez-Martínez M et al.. (2022) Novel Antagonist of the Type 2 Lysophosphatidic Acid Receptor (LPA2), UCM-14216, Ameliorates Spinal Cord Injury in Mice. J Med Chem, 65 (16): 10956-10974. [PMID:35948083]
17. Kihara Y, Maceyka M, Spiegel S, Chun J. (2014) Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol, 171 (15): 3575-94. [PMID:24602016]
18. Kiss GN, Fells JI, Gupte R, Lee SC, Liu J, Nusser N, Lim KG, Ray RM, Lin FT, Parrill AL et al.. (2012) Virtual screening for LPA2-specific agonists identifies a nonlipid compound with antiapoptotic actions. Mol Pharmacol, 82 (6): 1162-73. [PMID:22968304]
19. Kittaka H, Uchida K, Fukuta N, Tominaga M. (2017) Lysophosphatidic acid-induced itch is mediated by signalling of LPA5 receptor, phospholipase D and TRPA1/TRPV1. J Physiol (Lond.), 595 (8): 2681-2698. [PMID:28176353]
20. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, Leeb-Lundberg LM, Olde B. (2006) Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther, 318 (2): 619-28. [PMID:16651401]
21. Kozian DH, Evers A, Florian P, Wonerow P, Joho S, Nazare M. (2012) Selective non-lipid modulator of LPA5 activity in human platelets. Bioorg Med Chem Lett, 22 (16): 5239-43. [PMID:22801643]
22. Kritikou E, van Puijvelde GH, van der Heijden T, van Santbrink PJ, Swart M, Schaftenaar FH, Kröner MJ, Kuiper J, Bot I. (2016) Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice. Sci Rep, 6: 37585. [PMID:27883026]
23. Ledein L, Léger B, Dees C, Beyer C, Distler A, Vettori S, Boukaiba R, Bidouard JP, Schaefer M, Pernerstorfer J et al.. (2020) Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse. Br J Pharmacol, 177 (18): 4296-4309. [PMID:32627178]
24. Lee CW, Rivera R, Dubin AE, Chun J. (2007) LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem, 282 (7): 4310-7. [PMID:17166850]
25. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem, 281 (33): 23589-97. [PMID:16774927]
26. Liu S, Paknejad N, Zhu L, Kihara Y, Ray M, Chun J, Liu W, Hite RK, Huang XY. (2022) Differential activation mechanisms of lipid GPCRs by lysophosphatidic acid and sphingosine 1-phosphate. Nat Commun, 13 (1): 731. [PMID:35136060]
27. Maravillas-Montero JL, Burkhardt AM, Hevezi PA, Carnevale CD, Smit MJ, Zlotnik A. (2015) Cutting edge: GPR35/CXCR8 is the receptor of the mucosal chemokine CXCL17. J Immunol, 194 (1): 29-33. [PMID:25411203]
28. Mizuno H, Kihara Y. (2020) Druggable Lipid GPCRs: Past, Present, and Prospects. Adv Exp Med Biol, 1274: 223-258. [PMID:32894513]
29. Mizuno H, Kihara Y, Kussrow A, Chen A, Ray M, Rivera R, Bornhop DJ, Chun J. (2019) Lysophospholipid G protein-coupled receptor binding parameters as determined by backscattering interferometry. J Lipid Res, 60 (1): 212-217. [PMID:30463988]
30. Murai N, Hiyama H, Kiso T, Sekizawa T, Watabiki T, Oka H, Aoki T. (2017) Analgesic effects of novel lysophosphatidic acid receptor 5 antagonist AS2717638 in rodents. Neuropharmacology, 126: 97-107. [PMID:28859883]
31. Nieto-Posadas A, Picazo-Juárez G, Llorente I, Jara-Oseguera A, Morales-Lázaro S, Escalante-Alcalde D, Islas LD, Rosenbaum T. (2012) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol, 8 (1): 78-85. [PMID:22101604]
32. Ohashi T, Yamamoto T. (2015) Antifibrotic effect of lysophosphatidic acid receptors LPA1 and LPA3 antagonist on experimental murine scleroderma induced by bleomycin. Exp Dermatol, 24 (9): 698-702. [PMID:25959255]
33. Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im DS, Nochi H, Tamoto K, Tomura H, Okajima F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol Pharmacol, 64 (4): 994-1005. [PMID:14500756]
34. Oka S, Ota R, Shima M, Yamashita A, Sugiura T. (2010) GPR35 is a novel lysophosphatidic acid receptor. Biochem Biophys Res Commun, 395 (2): 232-7. [PMID:20361937]
35. Olianas MC, Dedoni S, Onali P. (2020) Antidepressants induce profibrotic responses via the lysophosphatidic acid receptor LPA1. Eur J Pharmacol, 873: 172963. [PMID:32007501]
36. Ray M, Nagai K, Kihara Y, Kussrow A, Kammer MN, Frantz A, Bornhop DJ, Chun J. (2020) Unlabeled lysophosphatidic acid receptor binding in free solution as determined by a compensated interferometric reader. J Lipid Res, 61 (8): 1244-1251. [PMID:32513900]
37. Schmitz K, Brunkhorst R, de Bruin N, Mayer CA, Häussler A, Ferreiros N, Schiffmann S, Parnham MJ, Tunaru S, Chun J et al.. (2017) Dysregulation of lysophosphatidic acids in multiple sclerosis and autoimmune encephalomyelitis. Acta Neuropathol Commun, 5 (1): 42. [PMID:28578681]
38. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Broadhead AR, Bain G, Santini AM, Darlington J, King CD, Baccei CS et al.. (2011) Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J Pharmacol Exp Ther, 336 (3): 693-700. [PMID:21159750]
39. Taniguchi R, Inoue A, Sayama M, Uwamizu A, Yamashita K, Hirata K, Yoshida M, Tanaka Y, Kato HE, Nakada-Nakura Y et al.. (2017) Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA6. Nature, 548 (7667): 356-360. [PMID:28792932]
40. Terakado M, Suzuki H, Hashimura K, Tanaka M, Ueda H, Kohno H, Fujimoto T, Saga H, Nakade S, Habashita H et al.. (2016) Discovery of ONO-7300243 from a Novel Class of Lysophosphatidic Acid Receptor 1 Antagonists: From Hit to Lead. ACS Med Chem Lett, 7 (10): 913-918. [PMID:27774128]
41. Virag T, Elrod DB, Liliom K, Sardar VM, Parrill AL, Yokoyama K, Durgam G, Deng W, Miller DD, Tigyi G. (2003) Fatty alcohol phosphates are subtype-selective agonists and antagonists of lysophosphatidic acid receptors. Mol Pharmacol, 63 (5): 1032-42. [PMID:12695531]
42. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S. (2009) Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem, 284 (26): 17731-41. [PMID:19386608]
43. Yanagida K, Valentine WJ. (2020) Druggable Lysophospholipid Signaling Pathways. Adv Exp Med Biol, 1274: 137-176. [PMID:32894510]
44. Yung YC, Mutoh T, Lin ME, Noguchi K, Rivera RR, Choi JW, Kingsbury MA, Chun J. (2011) Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci Transl Med, 3 (99): 99ra87. [PMID:21900594]
45. Zhang D, Decker AM, Woodhouse K, Snyder R, Patel P, Harris DL, Tao YX, Li JX, Zhang Y. (2022) Isoquinolone derivatives as lysophosphatidic acid receptor 5 (LPA5) antagonists: Investigation of structure-activity relationships, ADME properties and analgesic effects. Eur J Med Chem, 243: 114741. [PMID:36126387]
Subcommittee members:
Jerold Chun (Chairperson)
Yasuyuki Kihara
Danielle Jones (Editorial assistant to chairperson)
Tony Ngo
Valerie P. Tan |
Database page citation (select format):
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br J Pharmacol. 180 Suppl 2:S23-S144.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Ki16425 [33], VPC12249 [11] and VPC32179 [9] have dual antagonist activity at LPA1 and LPA3 receptors. There is growing evidence for in vivo efficacy of these chemical antagonists in several disorders, including fetal hydrocephalus [44], fetal hypoxia [12], lung fibrosis [32], systemic sclerosis [32] and atherosclerosis progression [22]. LPA2 selective antagonist SAR100842 [23], and LPA1 selective agonist UCM-05194 [7], are proposed for therapy of systemic sclerosis and neuropathic pain, respectively. The LPA2 selective agonist, GRI977143, shows efficacy in an animal model of multiple sclerosis [37]. The LPA5 selective antagonist, AS2717638, is effective in pain models [14]. Antidepressants, amitriptyline, clomipramine, and mianserin, are reported to show profibrotic responses via LPA1 [35].