Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Unless otherwise stated all data on this page refer to the human proteins. Gene information is provided for human (Hs), mouse (Mm) and rat (Rn).
Sodium/hydrogen exchangers or sodium/proton antiports are a family of transporters that maintain cellular pH by utilising the sodium gradient across the plasma membrane to extrude protons produced by metabolism, in a stoichiometry of 1 Na+ (in) : 1 H+ (out). Several isoforms, NHE6, NHE7, NHE8 and NHE9 appear to locate on intracellular membranes [5-7]. Li+ and NH4+, but not K+, ions may also be transported by some isoforms. Modelling of the topology of these transporters indicates 12 TM regions with an extended intracellular C-terminus containing multiple regulatory sites.
NHE1 is considered to be a ubiquitously-expressed ‘housekeeping’ transporter. NHE3 is highly expressed in the intestine and kidneys and regulate sodium movements in those tissues. NHE10 is present in sperm [10] and osteoclasts [3]; gene disruption results in infertile male mice [10].
NHE1 (Sodium/hydrogen exchanger 1 / SLC9A1) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE2 (Sodium/hydrogen exchanger 2 / SLC9A2) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE3 (Sodium/hydrogen exchanger 3 / SLC9A3) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE4 (Sodium/hydrogen exchanger 4 / SLC9A4) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE5 (Sodium/hydrogen exchanger 5 / SLC9A5) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE6 (Sodium/hydrogen exchanger 6 / SLC9A6) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE7 (Sodium/hydrogen exchanger 7 / SLC9A7) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE8 (Sodium/hydrogen exchanger 8 / SLC9A8) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE9 (Sodium/hydrogen exchanger 9 / SLC9A9) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHA1 (solute carrier family 9 member B1 / SLC9B1) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHA2 (solute carrier family 9 member B2 / SLC9B2) Show summary »« Hide summary
|
||||||||||||||||||||||||
Sperm-NHE (Sodium/hydrogen exchanger 10 / SLC9C1) Show summary »« Hide summary
|
||||||||||||||||||||||||
NHE11 (Sodium/hydrogen exchanger 11 / SLC9C2) Show summary »« Hide summary
|
* Key recommended reading is highlighted with an asterisk
Bobulescu IA, Moe OW. (2009) Luminal Na(+)/H (+) exchange in the proximal tubule. Pflugers Arch, 458 (1): 5-21. [PMID:18853182]
Casey JR, Grinstein S, Orlowski J. (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol, 11 (1): 50-61. [PMID:19997129]
Christensen HL, Nguyen AT, Pedersen FD, Damkier HH. (2013) Na(+) dependent acid-base transporters in the choroid plexus; insights from slc4 and slc9 gene deletion studies. Front Physiol, 4: 304. [PMID:24155723]
* Donowitz M, Ming Tse C, Fuster D. (2013) SLC9/NHE gene family, a plasma membrane and organellar family of Na⁺/H⁺ exchangers. Mol Aspects Med, 34 (2-3): 236-51. [PMID:23506868]
* Kato A, Romero MF. (2011) Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev Physiol, 73: 261-81. [PMID:21054167]
Kemp G, Young H, Fliegel L. (2008) Structure and function of the human Na+/H+ exchanger isoform 1. Channels (Austin), 2 (5): 329-36. [PMID:19001864]
* Ohgaki R, van IJzendoorn SC, Matsushita M, Hoekstra D, Kanazawa H. (2011) Organellar Na+/H+ exchangers: novel players in organelle pH regulation and their emerging functions. Biochemistry, 50 (4): 443-50. [PMID:21171650]
Orlowski J, Grinstein S. (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch, 447 (5): 549-65. [PMID:12845533]
* Parker MD, Myers EJ, Schelling JR. (2015) Na+-H+ exchanger-1 (NHE1) regulation in kidney proximal tubule. Cell Mol Life Sci, 72 (11): 2061-74. [PMID:25680790]
* Ruffin VA, Salameh AI, Boron WF, Parker MD. (2014) Intracellular pH regulation by acid-base transporters in mammalian neurons. Front Physiol, 5: 43. [PMID:24592239]
Slepkov ER, Rainey JK, Sykes BD, Fliegel L. (2007) Structural and functional analysis of the Na+/H+ exchanger. Biochem J, 401 (3): 623-33. [PMID:17209804]
1. Charmot D, Jacobs JW, Leadbetter MR, Navre M, Carreras C, Bell N. (2013) Compounds and methods for inhibiting NHE-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders. Patent number: US8541448 B2. Assignee: Ardelyx, Inc.. Priority date: 31/12/2008. Publication date: 24/09/2013.
2. Counillon L, Scholz W, Lang HJ, Pouysségur J. (1993) Pharmacological characterization of stably transfected Na+/H+ antiporter isoforms using amiloride analogs and a new inhibitor exhibiting anti-ischemic properties. Mol Pharmacol, 44 (5): 1041-5. [PMID:8246907]
3. Lee SH, Kim T, Park ES, Yang S, Jeong D, Choi Y, Rho J. (2008) NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochem Biophys Res Commun, 369 (2): 320-6. [PMID:18269914]
4. Masereel B, Pochet L, Laeckmann D. (2003) An overview of inhibitors of Na(+)/H(+) exchanger. Eur J Med Chem, 38 (6): 547-54. [PMID:12832126]
5. Miyazaki E, Sakaguchi M, Wakabayashi S, Shigekawa M, Mihara K. (2001) NHE6 protein possesses a signal peptide destined for endoplasmic reticulum membrane and localizes in secretory organelles of the cell. J Biol Chem, 276 (52): 49221-7. [PMID:11641397]
6. Nakamura N, Tanaka S, Teko Y, Mitsui K, Kanazawa H. (2005) Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem, 280 (2): 1561-72. [PMID:15522866]
7. Numata M, Orlowski J. (2001) Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem, 276 (20): 17387-94. [PMID:11279194]
8. Tse CM, Levine SA, Yun CH, Brant SR, Pouyssegur J, Montrose MH, Donowitz M. (1993) Functional characteristics of a cloned epithelial Na+/H+ exchanger (NHE3): resistance to amiloride and inhibition by protein kinase C. Proc Natl Acad Sci USA, 90 (19): 9110-4. [PMID:8415663]
9. Tse CM, Levine SA, Yun CH, Montrose MH, Little PJ, Pouyssegur J, Donowitz M. (1993) Cloning and expression of a rabbit cDNA encoding a serum-activated ethylisopropylamiloride-resistant epithelial Na+/H+ exchanger isoform (NHE-2). J Biol Chem, 268 (16): 11917-24. [PMID:7685025]
10. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL. (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol, 5 (12): 1117-22. [PMID:14634667]
Database page citation:
SLC9 family of sodium/hydrogen exchangers. Accessed on 02/07/2025. IUPHAR/BPS Guide to PHARMACOLOGY, http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=181.
Concise Guide to PHARMACOLOGY citation:
Alexander SPH, Fabbro D, Kelly E, Mathie AA, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Davies JA et al. (2023) The Concise Guide to PHARMACOLOGY 2023/24: Transporters. Br J Pharmacol. 180 Suppl 2:S374-469.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Analogues of the non-selective cation transport inhibitor amiloride appear to inhibit NHE function through competitive inhibition of the extracellular Na+ binding site. The more selective amiloride analogues MPA and ethylisopropylamiloride exhibit a rank order of affinity of inhibition of NHE1 > NHE2 > NHE3 [2,8-9].