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Abstract
This project explores the integration of OpenAI’s GPT-4o Large Language Model (LLM)
with the IUPHAR/BPS Guide to Pharmacology database to enable natural language
queries (NLQs) for retrieving pharmacological data through SQL conversion. Several
strategies were explored, culminating in a four-component prompt that incorporates
schema structure, many-shot learning using NLQ-SQL pairs, manually written rules,
and self-correction for error handling. The effectiveness of the prompt was evaluated
on a separate test set using metrics such as successful execution rate, non-empty output
rate, execution accuracy, and partial execution accuracy. The results were compared to
an alternative implementation approach across all metrics. Additionally, an analysis of
token usage and associated costs was conducted.
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Chapter 1

Introduction

Since the release of ChatGPT by OpenAI in November 2022, Large Language Mod-
els (LLMs) have gained widespread popularity (Meyer et al., 2023). This shift has
changed how users interact with information retrieval systems, including search engines,
databases, and the broader internet (Tabarsi et al., 2025). To keep up with these changes,
integrating LLMs into information retrieval has become increasingly important, en-
suring users can access data effectively (Weber, 2024). The IUPHAR/BPS Guide to
Pharmacology database (GtoPdb), curated from expert literature, currently requires SQL
for querying its dataset. This dissertation explores how OpenAI’s LLMs can enable
natural language access to GtoPdb.

1.1 Aims and Objectives

This project aims to enhance access to the IUPHAR/BPS Guide to Pharmacology
(GtoPdb) by using OpenAI’s Large Language Models to convert natural language
queries into SQL, eliminating the need for users to know SQL or the database structure.
LLMs have outperformed traditional text-to-SQL methods in benchmark datasets,
suggesting that OpenAI’s LLMs can provide a more efficient solution (Hong et al.,
2024). However, since OpenAI’s LLM is trained on general data, it lacks specific
knowledge of GtoPdb’s structure. Therefore, the model will be fine-tuned to handle the
GtoPdb schema and generate accurate SQL queries. Enabling natural language queries
has the potential to make GtoPdb more accessible to its audience of pharmacology
researchers and students, who may not have knowledge of writing SQL.

A key objective is to fine-tune the LLM using relevant data and test it on a set of 30
natural language queries (NLQs) and their corresponding gold standard SQL queries
curated by the NC-IUPHAR Database Executive Committee 1. Model performance will
be evaluated using four metrics: Successful Execution Rate (SER), Non-Empty Output
Rate (NER), Execution Accuracy (EX), and Partial Execution Accuracy (PEX). The
goal is to achieve the highest possible scores on these metrics, with an SER above 90%
and an NER above 80%, ensuring that the fine-tuned LLM generates executable SQL

1IUPHAR: https://iuphar.org/
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Chapter 1. Introduction 2

queries that match the expected results from the gold standard SQL in the test set.

Another key objective is to develop a pipeline that integrates the fine-tuned LLM with a
backend system. Users will input natural language queries, which the tuned LLM will
convert into SQL queries, executed on the database to retrieve results. It is essential to
define the boundaries for implementing the pipeline, ensuring that the LLM provides
factually accurate and up-to-date information exclusively based on the contents of the
database, without any manipulation or hallucination. Additionally, the system must
be designed to prevent the generation or dissemination of any harmful or misleading
information.

1.2 Overview

Chapter 2 introduces Large Language Models (LLMs), outlining their fundamental
principles and potential challenges. It explores the application of LLMs in text-to-SQL
tasks, particularly how they can be enhanced with a knowledge base to provide more
specific and dynamic information. Additionally, it discusses the relative performance
of different LLMs on text-to-SQL tasks and the key metrics used to evaluate them,
with a particular focus on the BIRD benchmark and dataset. This is followed by a
comparative analysis of available models to determine the most suitable choice for this
task. The chapter also introduces prompt engineering, defining its role in optimising
model performance, and presents criteria for effective prompt design. Finally, an
overview of the Guide to Pharmacology database is provided, detailing its relevance to
this project.

Chapter 3 presents the system architecture and the overall workflow, describing the
structure of the implemented pipeline and the data flow from input to output. It then
provides details on the NLQ-SQL dataset, curated by the NC-IUPHAR Database
Executive Committee, which was used for model tuning and testing. The chapter further
delves into the prompt implementation strategy, detailing its four key components:
GtoPdb schema; many-shot learning; refinement rules; and self-correction. Additionally,
the testing methodology is outlined, introducing a specialised test suite with four
evaluation metrics: Successful Execution Rate, Non-Empty Output Rate, Execution
Accuracy, and Partial Execution Accuracy.

Chapter 4 presents the experimental process undertaken to optimise the prompt and iden-
tify the most effective configuration. This includes an iterative exploration of different
many-shot learning strategies and an ablation study on various prompt components. The
chapter discusses the final prompt’s performance on both the development and test sets,
providing a comparative analysis of the results. Furthermore, it examines an alternative
pipeline and prompt engineering strategy developed by another undergraduate student,
comparing its test set performance against the proposed approach. Finally, details on
LLM runtime, token usage, and associated computational costs are analysed.

Chapter 5 summarises the key findings of this project, highlighting the developed system
and its achieved results. It also outlines potential areas for future work, focusing on
enhancements to both the methodology and overall system performance.



Chapter 2

Background

2.1 Large Language Models

A machine learning model is a type of mathematical model that, once trained on a given
dataset, can be used to make predictions or classifications on new data. Large language
models (LLMs) are machine learning models that apply neural network techniques
with millions of parameters to process human languages or text through prompts using
self-supervised learning techniques. This makes LLMs capable of generating human-
like text and allows users to interact with them using natural language (Naveed et al.,
2023). LLMs are accessible through interfaces for conversational capabilities like Open
AI’s Chat GPT-3 and GPT-4 1. Other examples include Meta’s Llama models 2 and
Google’s bidirectional encoder representations from transformers (BERT/RoBERTa)
and PaLM models 3. This project specifically focuses on the use of OpenAI’s GPT-4o
model, chosen for its optimal balance between performance and cost, as detailed in
Subsection 2.1.2.

Currently, LLMs are pre-trained on vast amounts of data, which means they lack up-to-
date information on dynamic databases that are constantly evolving. LLMs only “know”
the data they were trained on, which is typically limited to what was available on the
internet up until the time of their training. While these models are highly complex,
they remain static in their knowledge (Yildirim and Paul, 2024; Matarazzo and Torlone,
2025).

In cases where the knowledge of current or dynamic data is required, an LLM would
require access to the dynamic knowledge base and the ability to be specifically instructed
on new tasks or information to retrieve. Moreover, LLMs have other limitations, such as
their tendency to generate plausible yet factually incorrect outputs, often referred to as
“hallucinations” (Matarazzo and Torlone, 2025). Ultimately, LLMs are constrained by
the patterns they learned during training (Matarazzo and Torlone, 2025). LLMs also tend
to provide varying outputs for the same user prompt, which should be considered for

1OpenAI GPT-4: https://openai.com/index/gpt-4/
2Meta Llama 3.2: https://www.llama.com/
3Palm 2: https://ai.google/discover/palm2/
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Chapter 2. Background 4

LLM tuning and evaluation (Shen et al., 2025). This highlights a critical objective: the
GtoPdb LLM must not only be factually accurate but also rely on an external knowledge
base of the database structure to ensure reliable and effective query generation (Truhn
et al., 2023).

2.1.1 LLMs for Text-to-SQL

In recent years, text-to-SQL parsing, which converts natural language queries into
executable SQL statements, has gained significant attention. Models such as GPT-4
and Claude-2 have shown leading performance, with execution accuracy rates above
50%, setting a new benchmark in the field (Li et al., 2023). In contrast to text-to-
SQL benchmarks such as Spider 4 and WikiSQL 5, the BIRD benchmark captures
the complexity of real-world applications, which includes 12,751 text-to-SQL pairs
(11,218 training set and 1,533 development set) and 95 large-scale databases across 37
professional domains (Li et al., 2023; Wretblad and Gordh Riseby, 2024).

This aligns with the challenges posed by the Guide to Pharmacology, which aims to
generate SQL queries on a specialized scientific database. State-of-the-art systems
like GPT-4, achieve an execution accuracy of 54.89% (with human performance of EX
92.96%) (Li et al., 2023) which we will use as the benchmark for this project. The
metrics used to evaluate models on the BIRD benchmark are Execution Accuracy (EX),
which evaluates the content returned by the query and Valid Efficiency Score (VES),
which evaluates the efficiency of the generated SQL query. A comparison of EX and
VES across different LLMs is summarised in Figure 2.1.

Figure 2.1: Comparison of EX and VES across different LLMs on the BIRD dataset
(Li et al., 2023)

Figure 2.1 shows that the top-performing models are generally from OpenAI, with
GPT-4 achieving the best results and Claude-2 being the only exception to this trend.
However, with the rapid advancement of these models, GPT-4o has now replaced GPT-4

4Spider: https://yale-lily.github.io/spider
5WikiSQL: https://paperswithcode.com/dataset/wikisql

https://yale-lily.github.io/spider
https://paperswithcode.com/dataset/wikisql


Chapter 2. Background 5

as OpenAI’s flagship model, offering enhanced capabilities. Additionally, we will
evaluate performance using Execution Accuracy (EX) as what was used in BIRD, which
is defined as the proportion of examples in the evaluation set for which the executed
results of both the predicted and ground-truth SQLs are identical, relative to the total
number of SQLs. Considering the result set Vn executed by the n-th ground-truth SQL
Yn, and the result set V̂n executed by the predicted SQL Ŷn, EX is computed as follows:

EX =
∑

N
n=1 1(Vn,V̂n)

N

where 1(V,V̂ ) is an indicator function that is defined as:

1(V,V̂ ) =

{
1, if V = V̂
0, if V ̸= V̂

(Li et al., 2023)

We will not focus on efficiency, so the VES metric will be excluded from our evaluation.
Our primary interest is in the quality of content returned by the tuned LLM, and we will
gather more in-depth metrics in terms of EX, along with related data. Since LLMs can
improve by learning from their failures through trial-and-error methods, self-correction
can be incorporated (Pourreza and Rafiei, 2023). This would further enhance text-to-
SQL applications by enabling the model to refine its queries and recover from failed
attempts (Pourreza and Rafiei, 2023).

2.1.2 Model Comparison and Selection

As shown in Figure 2.1, GPT-4 was previously the leading model for text-to-SQL
tasks. However, it has a limited 8k context window, which restricts its ability to handle
complex databases like the Guide to Pharmacology. Additionally, newer models offer
enhanced capabilities and better performance. For this project, GPT-4o was chosen
for its 128k context length, cost-efficiency, and ability to be fine-tuned and function
implementation to meet specific requirements. It outperforms GPT-4 in both context
size and cost-effectiveness, making it more suitable for the task. Reasoning models,
such as o1 and o3-mini, offer larger context windows (200k tokens), but they do not
support fine-tuning and were therefore excluded. GPT-4.5 and GPT-4o-mini were also
considered, but GPT-4o was chosen for its balance of performance, cost, and fine-tuning
support. Notably, fine-tuning these LLMs incurs double the input cost. Table 2.1 6

summarises the context lengths and pricing of the considered OpenAI models.

2.2 Prompt Engineering

The effectiveness of the LLM depends on how precise the instructions conveyed to it
are (Nan et al., 2023). This process of formulating instructions in natural language

6OpenAI Pricing: https://platform.openai.com/docs/pricing

https://platform.openai.com/docs/pricing
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Model Context Length Input Cost Cached Input Cost Output Cost
GPT-4 8k 30.00 - 60.00
GPT-4.5 128k 75.00 37.50 150.00
GPT-4o 128k 2.50 1.25 10.00
GPT-4o-mini 128k 0.15 0.07 0.60
o1 200k 15.00 7.50 60.00
o3-mini 200k 1.10 0.55 4.40

Table 2.1: OpenAI Pricing (Costs in $ per 1M tokens)

within a prompt is referred to as prompt engineering. A well-structured prompt reduces
ambiguity, enforces the correct output format, and aligns the model’s response with
the task objectives (Drushchak et al., 2024). Figure 2.2 illustrates these different
components of an ideal prompt.

Figure 2.2: Components of an Ideal Prompt

As shown in Figure 2.2, an effective prompt for text-to-SQL applications should clearly
specify the LLM’s objective–translating natural language queries (NLQs) into exe-
cutable SQL commands. In the context of this project, providing relevant information
entails supplying the LLM with the GtoPdb schema and any additional details essential
for accurate query generation (Li et al., 2023). The prompt should also define the ex-
pected output format (syntactically correct and executable SQL), and include examples
of NLQ-SQL pairs (few-shot learning) to guide the model’s performance. Iterative
refinement of the prompt, based on output evaluation, further improves performance.
This process ensures the LLM generates accurate and executable SQL aligned with the
task requirements (Nan et al., 2023; Chang and Fosler-Lussier, 2023).

In OpenAI’s API, prompt engineering starts with a system message that defines the
model’s behaviour before any user interaction. For example, a simple system message
could be: “You are a Guide to Pharmacology expert that converts natural language
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queries to SQL queries.” This message is set during the initial API call, and the tokens
used are counted as context tokens. In this project, the system message is prompt
engineered as part of the development and tuning process.

2.3 The IUPHAR/BPS Guide to Pharmacology

The International Union of Basic and Clinical Pharmacology (IUPHAR) / British Phar-
macological Society (BPS) Guide to PHARMACOLOGY is an expert-curated database
consisting of 224 tables of ligand-activity-target relationships, sourced from high-quality
pharmacological and medicinal chemistry literature (Harding et al., 2024). It is used
extensively in drug discovery, basic and clinical research, and education. GtoPdb
primarily serves pharmacologists in research and students studying pharmacology. It
is important to consider these users needs and expectations when designing the LLM,
ultimately aiming to make the database more accessible.

The integration of LLMs with the GtoPdb enhances accessibility to complex pharma-
cological data for researchers. By utilising LLMs, users can query the database using
natural language, enabling them to obtain information without requiring deep technical
expertise in pharmacology or database management. LLMs can interpret user queries
that may vary in complexity and terminology, translating them into precise database
queries. For example, a researcher might ask, “What are the side effects of Drug X?”
or “Find all approved drugs”. The LLM would process this query, identify relevant
keywords, and retrieve the corresponding information from GtoPdb. This not only
enhances the user experience but streamlines the research process, allowing for quicker
insights into drug interactions, mechanisms of action, and efficacy. Furthermore, LLMs
can enhance education by providing explanations and contextual information about
pharmacological concepts and drug data, enabling students and researchers to deepen
their understanding of pharmacology through an intuitive dialogue-based interface with
GtoPdb.

It is also crucial to establish boundaries to prevent the system from providing harmful
information or taking actions that could pose risks while delivering drug-related insights.
The information provided by the tool should be accurate and not be misleading about
drug interactions, dosages, or side effects. This can impact researchers or healthcare
professionals, potentially leading to inappropriate treatment decisions. The information
provided by the tool should also be up to date and reflect the current guidelines and
findings related to drugs. The user should also only be allowed to carry out ’SELECT’
SQL queries through the LLM and not be able to insert or delete information from the
database which could cause the depiction of incorrect information or corrupt the data.
Lastly, users should not be allowed to ask for medical advice from the database.



Chapter 3

Methodology

This section provides an overview of the system, detailing the pipeline design, the
implementation strategies employed to address the challenges of this dissertation, and
the testing methodologies used to evaluate the LLM’s performance.

3.1 System Overview

The system comprises multiple components designed to tune the GPT-4o LLM accord-
ing to specific requirements, process natural language queries, and present accurate
results to the user. To ensure that the system reliably displays only factual information
retrieved from the database, a robust pipeline consisting of various components was
developed. The system relies on the OpenAI API for LLM queries and therefore neces-
sitates an API key to run. Figure 3.1 provides an overview of the system that was built
for this project.

The flow of actions illustrated in Figure 3.1 is initiated when a user submits a natural
language query (NLQ). This query is sent to the tuned LLM. The LLM is dynamically
tuned during interaction and is not a pre-existing fine-tuned model, due to its reliance
on the OpenAI API. The system message for the LLM is set as a constant, and when
the NLQ is made, it is sent as part of the message payload. API calls are made with
the context tokens, followed by the user message, which is processed by the LLM.
Because the LLM’s context has been prompt-engineered in advance, it generates an
SQL query based on the user’s input. The GtoPdb database is installed locally for
development purposes, using PostgreSQL as the database software and psycopg2 1, a
Python-PostgreSQL Database Adapter for database connection. Once the connection is
established, the number of retries is initially set to 0 and the SQL query generated by
the LLM is executed on the database.

If an error occurs during query execution, such as an SQL syntax error, incorrect column
names, or if the query executes but returns an empty dataframe, the NLQ is retried. In
this retry, the previous error message is included in the context; the new user query
becomes the original NLQ appended with a descriptive error message. The retry count

1psycopg2: https://pypi.org/project/psycopg2/

8
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Chapter 3. Methodology 9

Figure 3.1: GtoPdb LLM System Flowchart

is then set to 1, and this modified query is sent again to the tuned LLM. This retry
mechanism called self-correction, is only triggered if the number of retries is 0 and an
error previously occurred. If a retry has already been performed once, or if no errors are
encountered in the initial execution, the system proceeds to display whatever result was
returned-whether it is valid data or an empty result. This result is presented to the user
in the form of a table. This marks the end of the process for handling a single natural
language query, from submission to retrieving and displaying results from the database.
By not routing the results through the LLM, the system ensures that the data remains
unaltered, and the user is presented with the direct output of the executed SQL query.
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However, this project focuses solely on the backend implementation of the pipeline
and the tuning of the LLM. As such, no user interface has been implemented, and it is
assumed that the results will ultimately be delivered to the user.

Figure 3.2: NLQ to Result Execution Flow

Figure 3.2 illustrates the process of converting a natural language query into its corre-
sponding SQL result, as outlined in the pipeline overview. The query is first transformed
into a structured prompt, which is then used to generate an SQL query. This query is
subsequently executed, producing the final result. Appendix A highlights this process
through an example.

3.2 NLQ-SQL Dataset

A dataset comprising a total of 81 queries was curated by the NC-IUPHAR Database
Executive Committee to support the training and evaluation of the pharmacology-
focused large language model (LLM). These natural language queries (NLQs) were
then manually translated into corresponding SQL queries. The dataset was divided into
a training set and a test set. The training set consists of 51 NLQ-SQL pairs, which
were used throughout the development phase of the system. The test set includes
the remaining 30 NLQ-SQL pairs, which were reserved for final evaluation after
development was complete. To ensure an unbiased assessment, the test set was withheld
until the conclusion of the development phase. Appendix C and Appendix D present
some NLQs from the development and test sets.

Each query was classified by difficulty, using one of four levels: Easy, Easy-Moderate,
Moderate-Hard, and Hard. When splitting the data into training and test sets, stratified
sampling was applied to maintain approximately equal proportions of each difficulty
level in both sets. In cases where queries were considered similar, care was taken
to allocate them to different splits to ensure a diverse and representative evaluation.
Some natural language queries in the dataset were considered inherently vague, with no
definitive correct answer. In such cases, the provided SQL query represents one example
of a valid interpretation or reasonable answer. The dataset includes the following
metadata columns for each NLQ-SQL pair:

• ID: The identifier for the query in the complete dataset.

• Difficulty: One of the four values: Easy, Easy-Moderate, Moderate-Hard, Hard,
where a value of ‘1‘ indicates the assigned difficulty level.

• Greek: Indicates whether the natural language query contains a Greek letter.

• Vague/No definite right answer: Marks queries where the expected output is
likely to be vague.
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• Minimum output columns: Specifies the minimum number of columns that
should be retrieved to answer the query. While most queries require only one
column, including additional columns may improve usability for the end user.

• Notes for student: Contains notes on relevant aspects of the database schema

• Training/test set: Indicates whether the item belongs to the training set or the
test set.

• SQL: The SQL query corresponding to the natural language query.

• 2nd SQL: An alternative SQL query (provided for some queries).

Two examples from the training set are provided below to depict the format and variation
in complexity of the NLQ-SQL pairs.

1. Natural Language Query (Difficulty = Easy): “Find all approved drugs”

The LLM must infer that a “drug” refers to a ligand, retrieve relevant information from
the corresponding table, and apply conditions based on the column names.

1 SELECT ligand_id , name
2 FROM ligand
3 WHERE approved IS TRUE;

2. Natural Language Query (Difficulty = Hard): “What ligands and structures have
pKi values between 5 and 7 and are the primary targets of a GPCR?”

1 SELECT l.ligand_id , l.name , l.type , ls.isomeric_smiles , ls.
isomeric_standard_inchi_key , i.type , i.action,

2 CASE WHEN i.affinity_median IS NULL
3 THEN CASE WHEN i.affinity_high IS NULL
4 THEN i.affinity_low
5 ELSE i.affinity_high
6 END
7 ELSE i.affinity_median
8 END AS affinity ,
9 i.affinity_units

10 FROM ligand l, interaction i
11 JOIN ligand_structure ls ON i.ligand_id = ls.ligand_id
12 WHERE i.object_id IN (SELECT object_id FROM gpcr)
13 AND i.ligand_id = l.ligand_id
14 AND i.primary_target IS TRUE
15 AND CASE WHEN i.affinity_median IS NULL
16 THEN CASE WHEN i.affinity_high IS NULL
17 THEN i.affinity_low BETWEEN 5 AND 7
18 ELSE i.affinity_high BETWEEN 5 AND 7
19 END
20 ELSE i.affinity_median BETWEEN 5 AND 7
21 END
22 ORDER BY affinity DESC;
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3.3 Prompt Implementation Strategy

Various forms of input were used to prompt the LLM during the prompt engineering
process. This process involves training the LLM with natural language, requiring the
design of a prompt that is both concise and descriptive. My approach was to provide
the LLM with as much relevant information as possible. Before sending the natural
language query to the LLM, it is first prompted with context to guide its function. As
shown in Figure 2.2, an ideal prompt should include the objective, context, output
format, examples, and an iteration and refinement process. The goal was to incorporate
all of these aspects into the prompt.

The prompt begins with the statement: “You are an IUPHAR Guide to Pharmacology
expert that converts natural language queries to SQL,” which establishes the LLM’s
objective. Next, the LLM was provided with the full GtoPdb schema/structure in the
form of a JSON as context. Following this, many-shot learning was used by providing
examples from the complete training dataset of 51 NLQ-SQL pairs. For the iteration
and refinement component, the prompt was refined by adjusting a set of manually
written rules based on the LLM’s performance on the training set. Finally, the fourth
component involved including any relevant previous error messages for the same NLQ,
known as self-correction. Figure 3.3 illustrates the four key components of the prompt
used to fine-tune the GPT-4o LLM.

Figure 3.3: Components of the Text-to-SQL system prompt

These four components equipped the LLM with the necessary context to accurately
convert user NLQs into SQL queries.

3.3.1 Database Schema

The GtoPdb schema was stored in a JSON file, which served as a mapping between table
names and their respective column names. This structure ensured that the LLM had
complete knowledge of all available tables and their columns. However, the schema did
not include data types for the columns, as doing so would significantly increase token
usage. Specifically, while table names required 224 tokens and column names accounted
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for 1823 tokens (a total of 2047 tokens), including data types would have increased this
to 3870 tokens per user query. To minimise token consumption, we omitted data types,
relying instead on the LLM’s ability to infer them based on column names. A sample rep-
resentation of two tables, accessory protein and xenobiotic expression refs,
from the GtoPdb, as stored in the JSON file, is shown below:

{
"tables": [

{
"table_name": "accessory_protein",
"columns": ["object_id", "full_name"]

},
{

"table_name": "xenobiotic_expression_refs",
"columns": ["xenobiotic_expression_id", "

reference_id"]
}

]
}

To integrate this schema into the prompt, it needed to be represented as a string. The
JSON structure was therefore converted into a string format for compatibility. The
schema was introduced in the prompt using the following format:

You have the following PostgreSQL database schema. The
database consists of the following tables:
- Table: accessory protein
- Columns: object id, full name
- Table: xenobiotic expression refs
- Columns: xenobiotic expression id, reference id ...

The total token usage for this section of the prompt was calculated as 2495 tokens as
depicted in Table 3.1. Given that GPT-4o costs $5 per 1M tokens for context tokens,
this portion of the prompt incurs a cost of approximately $0.0125 per user query, i.e.,
per OpenAI API call. This prompting method ensures that the LLM has full knowledge
of all the tables and their corresponding column names in the GtoPdb.

Component Token Usage
Table names 224
Column names 1823
“Table:” mentions 224
“Columns:” mentions 224
Total 2495
Cost $0.0125

Table 3.1: Token usage breakdown for the database schema prompt
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3.3.2 Many-Shot prompting

Few-shot prompting refers to a technique in which an LLM is given a small number
of examples (typically 1 to 5) to guide its response generation. In contrast, many-shot
learning involves providing a much larger number of examples–ranging from 50 to
hundreds or even thousands–allowing the LLM to learn more effectively from patterns in
the data. Both approaches fall under the broader paradigm of in-context learning, where
the LLM learns from question-answer examples provided in the prompt. Research has
shown that many-shot learning significantly improves performance compared to few-
shot prompting (Agarwal et al., 2024). Figure 3.4 illustrates a comparison between few-
shot and many-shot tuning of the Gemini 1.5 Pro LLM across 11 tasks, demonstrating
that many-shot learning consistently outperforms the few-shot approach.

Figure 3.4: Comparison between few-shot and many-shot prompting
(Agarwal et al., 2024)

Based on these findings, many-shot learning was adopted as the second component of
the prompt in this project by providing the LLM with examples of NLQ-SQL pairs
from the training dataset. As discussed in Section 3.2, the training set contained 51
NLQ-SQL pairs along with additional metadata. During development, a 50-50 split was
used, with 25 examples for training (many-shot learning) and 26 for testing. However,
once the prompt was fully engineered and finalised, all 51 NLQ-SQL pairs were utilised
for many-shot learning. In addition to the NLQ-SQL pairs, I also incorporated the
associated metadata for each pair to further refine the model’s performance. Section 3.2
provides an overview of the different types of metadata available for each NLQ-SQL
pair in the dataset. The specific components selected for the many-shot learning phase
included:

• NLQ

• Notes for Student

• SQL

• 2nd SQL

• Minimum Output Columns
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To integrate these components into the prompt, all 51 NLQ-SQL pairs, along with
their metadata, were formatted into a structured text representation. This ensured that
the LLM could learn from a diverse set of examples while considering contextual
information. The prompt was designed as follows:

Here are some examples of natural language queries and their
corresponding PostgreSQL queries:
- Q: Natural Language Query
- Notes: Notes for Student
- A: SQL
- Alternative A: 2nd SQL
- Min Required Columns: Minimum output columns
...(for all 51 NLQ-SQL pairs)

This structured format was consistently applied across all 51 examples, serving as the
foundation for the many-shot learning phase. However, this component accounted for
the highest token usage, totalling 4,734 tokens, making it the most computationally
demanding and cost-intensive part of the prompt. Each user query (i.e., API call)
incurred a cost of $0.0237.

3.3.3 Refinement Rules

The third component of the prompt incorporated refinement rules, forming a crucial
part of the iterative refinement process, as shown in Figure 2.2. This refinement was
performed manually on the development set, using a 50-50 split, where 25 NLQ-SQL
pairs were used for training and the remaining 26 for testing. Through this process, I
systematically analysed the LLM’s outputs, identifying and addressing errors such as
syntactic issues or overly restrictive behaviour in SQL WHERE clauses. By pinpointing
areas where the LLM struggled, I iteratively developed and modified a set of refinement
rules. Figure 3.5 illustrates this manual iterative refinement process.

Figure 3.5: Iteration and Prompt Refinement Process
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Here is how the refinement component of the prompt was designed.

Follow these strict rules:
1. Always define ‘WITH RECURSIVE‘ at the beginning of the

query if needed.
2. Ensure all subqueries are correctly nested and avoid placing

‘WITH RECURSIVE‘ inside ‘IN (...)‘ clauses.
3. Always use ‘EXPLAIN‘ to verify the query structure before

finalizing the query.
4. Avoid unnecessary parentheses that can cause syntax errors.
5. Make sure column names match the provided schema exactly.
6. When using ‘ILIKE‘, ensure it applies to a valid text column

and make the match more flexible:
- If filtering for a single word (e.g., ’delta’), use:

1 ILIKE ’%delta%’ OR ILIKE ’%Delta%’

- If filtering for multi-word terms (e.g., ’GABA B1’ or
’GABA < sub> B1</sub >’), try multiple formats:

1 ILIKE ’%GABAB1%’ OR ILIKE ’%GABA B1%’ OR
ILIKE ’%GABA <sub>B1</sub >%’

7. Use table aliases to improve query readability and ensure cor-
rect joins.

8. When instructed to generate a write-up or essay, focus solely on
generating PostgreSQL queries that retrieve as much relevant
data as possible.

Your task is to generate valid, executable PostgreSQL queries
based on natural language questions. Generate only fully func-
tional SQL queries without placeholders or missing clauses

The following set of rules was incorporated into the prompt, resulting in optimal LLM
performance during the development testing phase. Additionally, this component of
the prompt is the most efficient in terms of token usage and cost, requiring 179 tokens,
which corresponds to a cost of $0.0009 per user query (i.e., per API call).

3.3.4 Self-Correction

The final component of the prompt design incorporates self-correction, enabling an
automated iterative refinement process. If an SQL query execution fails, the prompt is
dynamically adjusted and retried. Figure 3.6 illustrates this process step by step. The
user submits a natural language query (NLQ), which is fed into the LLM. The LLM then
converts the NLQ into an SQL query, which the backend executes on the GtoPdb. We
are currently focusing on the scenario where an error occurs. If the generated SQL query
fails, the database returns a descriptive error message explaining the issue. The backend
captures this error message and sends it back to the LLM, linking it to the original NLQ.
The LLM, now incorporating the error context, generates a revised SQL query intended
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Figure 3.6: Self-Correction Process

to correct the previous mistake. This new SQL query is then executed on the database.
Regardless of whether it fails again or executes successfully, the backend captures the
result and presents it to the user. During the execution of an LLM-generated SQL query,
two types of failures can occur, both of which must be appropriately handled to facilitate
self-correction:

1. Execution Failure – The SQL query cannot be executed due to syntax errors or
references to non-existent tables or columns. This type of SQL execution failures
return self-descriptive error messages, which will be directly incorporated into
the prompt. For instance, a typical SQL execution failure would look like this
which is attached to the user prompt on retrying:

Execution failed on SQL:
WITH RECURSIVE subfamilies AS (...)
SELECT ...
FROM object o
JOIN receptor2family rf ON o.object_id = rf.object_id
...
WHERE name ILIKE ’%chemokine receptors%’
AND i.selective = ’Selective’;

ˆ
Error: Invalid input syntax for type boolean: “Selective”

2. Empty Result Set – The query is syntactically correct and executes successfully
but returns no results (i.e., no rows are retrieved). Since no error message is
generated by default when this occurs, a custom error message was designed to
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be automatically generated and fed into the prompt.

SQL executed but returned an empty result.
Query: [Previously failed SQL query]
Possible reasons:
- The referenced table or columns may be empty.
- Filtering conditions might be too strict.
- Data may not exist for the given WHERE clause.
- Joins might be eliminating rows due to unmatched conditions.

The set of reasons of failure was curated using the GPT-4o LLM, through an analysis of
its output against the expected results on the development set. For both failure types, the
failure message was attached to the re-attempted NLQ, ensuring that the LLM received
crucial feedback to iteratively refine its SQL generation process.

Self-Correction prompt = Previous error message + NLQ

Only one round of self-correction was permitted for an NLQ–if the query fails again,
it is classified as a complete failure. This approach optimises token usage while also
allowing the user to modify their NLQ if necessary to obtain better results. Through this
process, an optimised prompt was developed, integrating four key components–GtoPdb
schema, many-shot prompting, refinement rules, and self-correction into the LLM’s
context for each API call, ensuring effective SQL generation for every user-provided
natural language query.

3.4 Testing

A range of metrics was used to evaluate the performance of the prompt-engineered
LLM for Text-to-SQL during both the development and testing phases. The test suite
was carefully designed to capture all details related to SQL execution, ensuring a
comprehensive assessment of performance. Four evaluation metrics were selected for
assessing the LLM, determined collaboratively by myself, Ian Little–who worked on a
different methodology within this project, and our supervisors, Dr. David Sterratt and
Dr. Simon Harding from the IUPHAR Executive Committee.

3.4.1 Metrics

The Successful Execution Rate (SER) and Non-Empty Execution Rate (NER) measure
the percentage of generated SQL queries that are syntactically correct, executable,
and capable of returning results. Meanwhile, Execution Accuracy (EX) and Partial
Execution Accuracy (PEX) compare the actual output of the SQL query against the
expected data, quantifying the similarity between them. For both the development
and test sets, each metric was evaluated as a boolean value, indicating whether it was
satisfied for a given query. The final metric score was then computed as the percentage
of queries for which the metric was marked as true. Let M be a given metric (e.g., SER,
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NER, EX, or PEX), and let there be N total queries in the dataset (either development
or test set). Define an indicator function:

IM(qi) =

{
1, if the metric M is satisfied for query qi

0, otherwise

Then, the final metric score for M is computed as:

Final ScoreM =
1
N

N

∑
i=1

IM(qi)×100%

This formula expresses that for each query qi, the metric is evaluated as a boolean value
(1 if satisfied, 0 otherwise), and the final percentage score is the average number of
queries for which the metric was satisfied. The goal through the development phase
was to achieve a value has high as possible on all four of the following metrics.

Successful Execution Rate

This metric quantifies the percentage of test queries that executed successfully, meaning
they were syntactically valid and executed on the database without errors. Notably, if
an SQL query runs but returns an empty table (i.e., zero rows), it is still considered a
successful execution.

Non-Empty Execution Rate

This metric quantifies the percentage of test queries that executed successfully and also
returned non-empty tables. Therefore, if an SQL query runs but returns an empty table,
the query would be considered as a failed execution.

Execution Accuracy

This metric evaluates the correctness of SQL query execution by comparing the results
of the generated SQL query against a gold standard SQL query derived from the
NLQ-SQL pairs in the dataset. Both the generated and gold standard SQL queries
are executed, and the generated query is considered correct for this metric only if all
returned rows match exactly. However, actual column names are not taken into account.

Let:

• P be the set of rows returned by the predicted SQL query (i.e., predicted
dataframe).

• G be the set of rows returned by the gold standard SQL query (i.e., gold
dataframe).

The EX function per query is defined as:

Query EX(P,G) =

{
1, if P = G
0, otherwise
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where:

• Each row in P and G is treated as an unordered tuple, meaning row and column
order does not affect the comparison.

• If either P or G is None (i.e., the query did not return results), the function returns
0.

Partial Execution Accuracy

This metric assesses the correctness of SQL query execution by comparing the results of
the generated SQL query with a gold standard SQL query derived from the NLQ-SQL
pairs in the dataset. Both queries are executed, and the generated query is considered
correct under this metric only if all returned rows match, while variations in the number
of columns are permitted. Essentially, this ensures that the same data is retrieved,
regardless of whether additional or fewer columns are present. If common columns
exist, only the data from those columns are compared between the results of both
queries. If no common columns exist, the evaluation follows the same logic as EX. The
PEX function can be formulated mathematically as follows.

Let:

• P be the set of predicted rows from the generated SQL query.

• G be the set of gold standard rows from the reference SQL query.

• CP be the set of columns in the predicted query’s result.

• CG be the set of columns in the gold standard query’s result.

• P′ and G′ be the filtered versions of P and G, containing only columns in CP∩CG.

PEX function per query is defined as:

Query PEX =


1, if CP ∩CG ̸= /0 and P′ = G′

1, if CP ∩CG = /0 and Query EX(P,G) = 1
0, otherwise

Each of these four metrics was averaged across all test queries, and a final percentage
was computed for each metric.

3.4.2 Process

The testing process was conducted in two phases, development testing, which oc-
curred during development, and final testing, which took place after development was
completed.

Development Testing

During the development phase, only the development set of NLQ-SQL pairs was used
for evaluation, as outlined in Section 3.2. The development set consisted of 51 NLQ-
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SQL pairs, evenly distributed across four difficulty levels. Of these, 26 queries were
selected for testing the prompt, with a 50-50 split, and all four metrics were applied to
evaluate performance.

Final Testing

After finalising the prompt, the version that demonstrated the best performance across
the four metrics during development testing was selected. As mentioned in Section 3.2,
the specially designated test set consisted of 30 NLQ-SQL pairs. This test set was
only revealed once development was complete to ensure an unbiased development and
assessment process. Final testing was performed on this set of pairs, with all four
metrics calculated to assess the prompt’s performance on an unseen dataset. The results
were also compared with Ian Little’s solution for the same task, which will be discussed
in depth in Chapter 4.



Chapter 4

Results and Discussion

4.1 Previous Experiments

The approach taken in this study was to provide the LLM with relevant information in a
structured and concise manner, optimising its performance for the given task. To assess
its incremental improvements, information was introduced step by step. Evaluation
began with Non-Empty Output Rate (NER) as the primary metric to systematically
refine the prompt’s components.

These evaluations were conducted on a 50% split of the development set, comprising
26 out of 51 NLQ-SQL pairs. As illustrated in Figure 4.1, providing only the manual
refinement rules resulted in the lowest NER score of 0%. In the Many-Shot Learning
(MSL) setting, a 25-shot prompt without additional context achieved approximately
30% NER. Subsection 4.1.1 highlights how the optimal n was found for this component.
The most significant improvement occurred when the schema structure was included,
increasing NER to nearly 40%. Alternative methods were explored for incorporating
schema information, such as mapping all possible columns to their respective tables
instead of tables to columns to reduce token usage. However, this did not significantly
decrease the number of tokens. Another approach, using numerical IDs to reference
columns, was discarded as the LLM requires interpretable natural language prompts.

To further enhance performance, all three components–rules, MSL, and schema were in-
tegrated into a single prompt. This resulted in a sharp increase in NER to approximately
70%. Finally, self-correction (SC) was employed for error handling, allowing the LLM
to refine its SQL generation after receiving error messages from previous attempts.
This approach led to a substantial performance gain, with NER exceeding 90%. These
findings demonstrated a clear trend: performance improves as rules, MSL, and schema
information are introduced, with a notable boost when combined. Self-correction further
enhances accuracy, underscoring its potential for iterative SQL generation refinement.

For the visualisation of results, error bars represent 95% confidence intervals for
proportions, computed using the Jeffreys interval1 , a Bayesian approach based on

1Confidence Interval: https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
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Jeffreys prior (Beta(0.5, 0.5)). Given a sample size n and observed proportion p, the
Beta distribution parameters are set as:

a = n · p+0.5, b = n · (1− p)+0.5

The lower and upper bounds are then obtained using the inverse survival function (ISF)
of the Beta distribution at the 2.5% and 97.5% percentiles, providing a credible range for
the true proportion. This approach highlights the variance in the LLM’s behaviour when
generating outputs, indicating the expected variation if the experiment were repeated
multiple times.

Figure 4.1: Effect of Incrementally Adding Information on LLM Performance for NER

4.1.1 Finding the optimal n for n-Shot Learning

To implement Many-Shot Learning effectively, it was necessary to determine the optimal
number of NLQ-SQL examples (n) to include. Experiments were conducted from 0-
shot up to 25-shot learning, while keeping all other prompt components constant. n
samples were chosen at random from the 50% split on the development set while testing
on the remaining 50%. Figure 4.2 illustrates the impact of increasing n on the NER,
Partial Execution Accuracy (PEX) and Execution Accuracy (EX) metrics. Additionally,
Appendix B presents the effect on Successful Execution Rate (SER) though this metric
exhibited negligible variation. For NER, a steady increase was observed, starting at
over 50% for 0-shot and exceeding 95% at 25-shot. A notable spike occurred at 5-shot,
reaching 80%, though the improvement was not as pronounced as at 25-shot. PEX
showed a more gradual increase, remaining consistently below 25% between 5-shot
and 15-shot, before rising to approximately 30% at 20-shot and 25-shot. In contrast,
EX began at around 7% for 0-shot, followed by a slight decrease from 1-shot to 5-shot,
remaining under 5%. However, from 10-shot to 20-shot, EX remained above 10%, with
a final increase at 25-shot, where EX exceeded 15%.
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Figure 4.2: Effect of increasing n-shot in NER, PEX and EX performance
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4.1.2 Ablation study on Individual Prompt Components

An ablation experiment was designed to evaluate the significance of each individual
component within the prompt. Ablation methods are employed in prompt engineering
and LLM research to assess the impact of specific prompt components on performance
(Maharjan et al., 2024; Zhang et al., 2024). Given that the prompt consisted of four
distinct components, a series of ablation experiments were conducted on the devel-
opment set. Each component was systematically removed from the full prompt, and
the resulting performance was compared against that of the complete prompt. Figures
Figure 4.3 illustrates the impact of excluding schema structure, many-shot learning,
rules, and self-correction.

Figure 4.3: Effect of prompt components in LLM performance

Schema

The removal of the schema had a significant impact, particularly on the NER and SER
metrics, while its effect on PEX and EX was minimal. This suggests that the schema
plays a crucial role in ensuring the generated SQL query is syntactically correct and
executable, rather than directly influencing whether the query retrieves the intended
results. Specifically, excluding the schema led to a 25% decrease in NER and a 10%
reduction in SER.
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Many-shot Learning

The removal of Many-Shot Learning resulted in a substantial decline in performance,
with NER decreasing by approximately 35%. This also led to the most significant drops
in PEX and EX, with reductions of 30% and 10%, respectively. Notably, without Many-
Shot Learning, PEX and EX were close to 0%, indicating that providing relevant NLQ-
SQL examples is crucial not only for generating syntactically correct and executable
SQL queries (as reflected by NER) but also for ensuring that the queries retrieve the
intended results, as measured by PEX and EX.

Rules

One of the queries, “Write an essay on endothelin receptor antagonists,” timed out as it
failed to generate an SQL query when the rules were removed. The absence of rules also
led to a more than 20% decrease in NER, indicating their crucial role in ensuring that
the generated SQL queries are valid, executable, and non-empty. While PEX appeared
higher, this is likely due to variance and inconsistencies in LLM behaviour, as reflected
by the error bars. Additionally, EX dropped significantly by 10%, further highlighting
the importance of rules in query formulation.

Self-Correction

Lastly, the removal of self-correction resulted in a notable decrease of over 30% in
NER. PEX also dropped by approximately 10%, while SER and EX showed reductions,
though these were not as substantial. This suggests that self-correction plays a key
role in refining query generation, particularly in improving syntactic correctness and
execution accuracy.

It is evident that all four components of the prompt play a crucial role in maximising
NER, SER, PEX, and EX. The removal of any component resulted in a decline in the
LLM’s performance. Additionally, the experiments demonstrated that increasing n in
n-shot learning significantly enhances performance, with Many-Shot Learning having
the most substantial impact on ensuring high PEX and EX scores.

4.2 Final Approach

Based on these experiments, it was determined that all four prompt components should
be retained, and n-shot learning should be maximised by utilising all available examples.
Since the development set contained 51 NLQ-SQL pairs, 26 were used for Many-Shot
Learning, while the remaining 25 were reserved for testing. However, for the test set,
which consisted of 30 NLQ-SQL pairs designated solely for testing, a 51-shot learning
approach was implemented using the entire training set.

4.2.1 Development Set Results

The results from the development set in Table 4.1 demonstrate the effectiveness of the
final prompt in generating executable SQL queries. The LLM achieved an SER of 100%
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on 26 test queries all together. Notably, 96.15% of these queries produced non-empty
outputs, suggesting that the prompt effectively guides the LLM to generate meaningful
queries that retrieve relevant data. However, the EX is at 15.38%, indicating that there
are areas for future work in generating SQL that precisely aligns with user intent on the
LLM’s first attempt itself. PEX is recorded at 30.77%, which is double as EX, meaning
that the LLM does capture the data the user intends to see but with more or less columns.
Appendix C depicts these results in further detail.

4.2.2 Test Set Results

The test set, consisting of 30 NLQ-SQL pairs, was released after the development and
finalisation of the prompt. As mentioned in Table 4.1, the SER remained consistent
with the development set results, achieving 100%. However, the NER was slightly
lower at 90%, compared to the development set. EX also saw a minor decline, with
a value of 13.33%, about 2% lower than in the development set. On the other hand,
PEX increased, reaching 43.33%, up from 30.77% in the development set. Appendix D
depicts these results in further detail. The results of the ablation study on Many-Shot
Learning indicated that it played a critical role in enhancing the PEX and EX values,
as shown in Figure 4.3. This increase could be attributed to the shift from 25-shot
learning (used during development testing) to 51-shot learning, which incorporated the
entire training set and likely improved the PEX. Additionally, the upward trend in PEX
with increasing n in n-shot learning, as depicted in Figure 4.2, further supports this
explanation.

Metric Development Set Test Set
Value 95% CI Value 95% CI

Count 26 - 30 -
SER 100.00% 90.88% - 100.00% 100.00% 92.03% - 100.00%
NER 96.15% 83.39% - 99.58% 90.00% 75.66% - 97.10%
PEX 30.77% 15.75% - 49.81% 43.33% 26.89% - 60.99%
EX 15.38% 5.42% - 32.54% 13.33% 4.67% - 28.65%

Table 4.1: Comparison of Development and Test Set Results

4.3 Comparison with Alternative Prompt Implementa-
tion Strategy

In the companion undergraduate project that Ian Little implemented, an alternative
prompt engineering strategy for text-to-SQL on GtoPdb was implemented using the
o3-mini model, as illustrated in Figure 4.4. This approach follows a multi-layered LLM
querying process that involves the following stages:

1. Schema Linking: Given an NLQ, the LLM is provided with the full schema and
instructed to select the most relevant tables.
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Figure 4.4: Alternative Prompt Implementation Strategy
(Little, 2025)

2. SQL Generation: Using these selected tables as context, the LLM generates an
SQL query.

3. Self-Correction (Optional): If an error is detected, the LLM regenerates an SQL
query by sending the error message as additional context.

A 5-shot learning approach is applied between these stages, where the LLM selects five
NLQ-SQL examples based on their semantic relevance to the user’s NLQ rather than
through random sampling. These examples are incorporated into the prompt at each
stage of the LLM querying process. Across the pipeline, for each user query, the LLM
is queried up to four times–once for retrieving the top 5 NLQ-SQL training set samples,
once for schema linking, once for SQL generation, and optionally for self-correction.

Figure 4.5: Comparison between the primary approach (this project) and the alternative
prompt implementation strategy by Ian Little

Figure 4.5 presents a comparative analysis of NER, SER, PEX, and EX between the
primary approach (this project) and the alternative method implemented by Ian Little
(Little, 2025). Both models were evaluated using the same test set of 30 queries. SER
was identical for both at 100%, and the NER difference was 6.67%, indicating that both
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approaches generate valid and executable queries. A 3.33% difference was observed in
EX, showing a variation in the accuracy of retrieving the expected results. The most
notable contrast was in PEX, where the primary approach outperformed the alternative
by 13.33%. This is likely due to the difference in the number of examples provided
during training—51-shot learning in this project versus 5-shot learning in the alternative
approach. The results suggest that while schema linking helps narrow down relevant
tables, providing a larger set of examples significantly impacts PEX to understand user
needs from a single prompt better.

4.4 Runtime and Cost

The average runtime per query on the final test set was 6.01± 5.14 seconds, where
5.14 is the standard deviation 2. This was computed by summing the runtimes of each
NLQ-SQL in the test set (size = 30) and calculating the mean and standard deviation.
The cost breakdown for the three compulsory components of the prompt is depicted in
Table 4.2.

Prompt Component Tokens Cost ($)
Database Schema 2495 0.0125
Many-shot Prompting 4734 0.0237
Refinement Rules 179 0.0009
Total 7408 0.0370

Table 4.2: GtoPdb LLM System Prompt’s Token usage and cost

In the event that the initial LLM-generated SQL query fails, self-correction is employed
to generate a revised query. This process typically leads to a doubling of the token usage
from 7408 tokens to approximately 14816 tokens. As a result, the total cost per query
would increase, with the cost rising to approximately $0.0741 when self-correction is
triggered.

As the cost of providing context to GPT-4o is $5 per million tokens, based on the
current prompt engineering setup, the minimum cost per API call is $0.0370. For each
user query, the cost will either be $0.0370, assuming no failure and self-correction, or
approximately $0.0741 if self-correction is required due to a failed initial query. This
calculation considers only the cost of prompt engineering, excluding additional tokens
required for output generation and query processing, which are likely minimal.

2Standard Deviation: https://en.wikipedia.org/wiki/Standard_deviation

https://en.wikipedia.org/wiki/Standard_deviation
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Conclusions

5.1 Summary and Reflection

A prompt was engineered for the GPT-4o model to convert natural language queries
(NLQs) into SQL for the Guide to Pharmacology database (GtoPdb). This prompt con-
sisted of four key components: the GtoPdb schema, many-shot learning with 51 NLQ-
SQL pairs from the training set, manually written rules, and optional self-correction for
error correction. A dataset curated by the NC-IUPHAR Database Executive Committee
was used, containing 51 NLQ-SQL pairs for the training set and 30 NLQ-SQL pairs for
the test set, along with additional metadata. To evaluate the performance of the LLM,
four key metrics were used: Successful Execution Rate (SER), Non-Empty Output Rate
(NER), Partial Execution Accuracy (PEX), and Execution Accuracy (EX). SER and
NER measure whether the LLM generates syntactically correct and non-empty outputs,
while EX assesses whether the SQL results precisely match user intent. PEX evaluates
the same, but with variations in the number of columns.

During development, a 50-50 split was used, with half the dataset allocated for testing
and the remainder for many-shot learning. It was demonstrated that increasing the
number of NLQ-SQL pairs in many-shot learning improved performance in NER, PEX
and EX, indicating that all available pairs should be utilised. An ablation study further
confirmed the importance of each prompt component, as removing any of the four
elements led to a decline in performance across all metrics.

The final prompt was tested on the 30-query test set, achieving SER = 100%, NER
= 90%, PEX = 43.33%, and EX = 13.33%. These results were compared with an
alternative approach implemented by a fellow student, which used schema-linking
and 5-shot learning (selecting the most relevant examples for each NLQ). Notable
differences were observed in PEX, where the alternative method performed worse,
likely due to the difference between 5-shot and the 51-shot strategy used in this study.
SER remained the same at 100%, with minor performance variations in NER and EX.
The runtime of the final prompt on the test set averaged 6.01±5.14 seconds per user
query (where 5.14 is the standard deviation), with a token usage of 7408 and a cost of
$0.0370 per user query. If self-correction were applied, this cost would approximately
double.
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Compared to the BIRD benchmark, where the best model achieved an EX of 54.89%
(with human performance at 92.96%) (Li et al., 2023), the GtoPdb LLM attained an
EX of only 13.33%. A key factor in this performance gap is likely the difference
in training data: the BIRD training set comprises 11,218 NLQ-SQL pairs across 95
diverse databases, whereas the GtoPdb LLM relied on only 51 examples for many-shot
learning. This stark contrast in data volume–51 samples versus 11,218–could explain
the disparity in execution accuracy. Notably, GPT-4 achieved 54.89% EX on BIRD,
and this project used an even more advanced model, GPT-4o, with access to all relevant
knowledge. Given this, performance should theoretically be comparable. However,
the complexity of the GtoPdb itself, adds an additional challenge beyond data sparsity.
Expanding the training dataset is expected to improve the EX of the GtoPdb LLM, but
due to the complexity of the database, it is less likely to reach the EX seen in the BIRD
benchmark.

5.2 Areas of Future Work

Since NER and SER demonstrated high results, the next priority is enhancing PEX
and EX, which were recorded at 43.33% and 13.33% respectively, to ensure that the
generated SQL queries precisely match user intent. Many-shot learning emerged as
an influential factor in enhancing EX and PEX, suggesting that providing a larger
set of example NLQ-SQL pairs could significantly improve performance. The BIRD
benchmark further supports this, demonstrating that more examples correlate with
higher EX scores.

Another potential direction to refine PEX and EX is the incorporation of user feedback
into the query generation process. Developing a user interface (UI) would enable users
to interact with and refine the generated SQL queries, such as by requesting more or
fewer columns or directly editing the query. Human intervention can enhance text-to-
SQL accuracy (Cai et al., 2024). The UI could also leverage contextual chains, such as
LangChains 1, to retain the context of previous queries once a session starts, allowing
the LLM to perform more effectively while optimising token usage (Wu et al., 2021).
Additionally, integrating Retrieval-Augmented Generation (RAG), where specific tools
and predefined functions supplement the LLM’s capabilities, would reduce reliance on
the model alone. This approach would provide greater control over the query generation
process and enable more precise tuning to meet user-specific needs (Cuconasu et al.,
2024).

Further optimisation efforts should focus on reducing token usage, computational costs,
and query efficiency. Techniques similar to schema-linking and 5-shot learning-where
the most relevant examples are dynamically selected based on the NLQ-could be
explored to optimise performance while maintaining accuracy. These improvements,
combined with a more interactive and adaptive user experience, would help address the
current limitations and enhance the overall effectiveness of text-to-SQL conversion for
the GtoPdb.

1LangChain: https://www.langchain.com/

https://www.langchain.com/
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University, Department of Computer and Information Science. LIU-IDA/LITH-EX-
A–24/001–SE. Supervisor: Oskar Holmström. Examiner: Marco Kuhlmann.

Wu, T., Terry, M., and Cai, C. J. (2021). Ai chains: Transparent and controllable



Bibliography 34

human-ai interaction by chaining large language model prompts. arXiv preprint
arXiv:2110.01691.

Yildirim, I. and Paul, L. A. (2024). From task structures to world models: what do llms
know? Trends in Cognitive Sciences, 28(5):404–415.

Zhang, F. et al. (2024). Benchmarking biomedical relation knowledge in large language
models. In Peng, W., Cai, Z., and Skums, P., editors, Bioinformatics Research and
Applications. ISBRA 2024, volume 14955 of Lecture Notes in Computer Science.
Springer, Singapore.



Appendix A

NLQ to data Example

Below is an example of a potential user request along with its generated SQL query and
result.

1. User prompts: “View All Ligands”

2. Generated SQL query by GPT-4o:

1 SELECT * FROM ligand;

3. Retrived data from PostgreSQL:

ligand id name pubchem sid ... bioactivity comments vector

3560 gastrin-17 135651757.0 ... None
3550 CCK-33 135651649.0 ... None
5237 p122-RhoGAP 178101921.0 ... None
5007 inhibin &beta;B 178101704.0 ... None
3738 PTHrP 135651870.0 ... None
... ... ... ... ...
12728 azidamfenicol 479821188.0 ... ’activ’:12 ’antibacteri’:11 ’data’:8 ’drug’:15
12729 EN67 479821427.0 ... None
12730 sutezolid 483123320.0 ... ’-0.50’:18 ’0.03’:17 ’0.125’:10 ’activ’:7,36
12731 sarecycline 485206042.0 ... ’-16’:12 ’0.5’:11 ’acn’:6 ’activ’:3 ’also’:24
12732 florfenicol 485206044.0 ... ’-6.3’:27 ’0.4’:26 ’0.5’:23 ’activ’:5,18 ’aure...
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Appendix B

n-shot performance on SER

Figure B.1: Effect of increasing n-shot in SER performance
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Appendix C

Detailed Prompt performance on
development set

Table C.1: Development Set Evaluation Results

Test Case NLQ EX PEX
1 What does the Guide to Pharmacology know about Voltage-

gated ion channels?
False True

2 What antimalarial ligands are approved drugs? False False
3 Find enzymes with endogenous substrates that have no phar-

macology to speak of?
False False

4 What ligands, not in human, interact with GABAB1 False False
5 How many antibodies with binding data are there in GtoPdb? True True
6 List all fatty acid binding proteins and their human gene

identifiers
False False

7 Find synthetic organic ligands with a molecular weight less
than 500

False False

8 List chemical structures for BACE1 that have pAct > 7 and
order these high to low

False False

9 Find any endogenous substrates of decarboxylases? False False
10 Write an essay on endothelian receptors antagonists False False
11 What compounds, that are not approved drugs, have evidence

of being used in clinical trials?
True True

12 Find GPCR agnonists with pKi affinities greater than 10 False False
13 Find information on the clinical use of drugs targetting

Glucagon receptors
False False

14 Which approved antibodies target ligands? False True
15 What antimalarial compounds are in the database? False True
16 What are the selective antagonists for Leukotriene receptors

and their affinities?
False False

17 What is known about Opioid delta receptor agonists? False False
18 What compounds have a role in treating arthritis? True True

Continued on next page...
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Table C.1 (Continued)
Test Case NLQ EX PEX

19 Find all the papers in the Guide that are listed as preprints
(useful for housekeeping)

False False

20 Are there compounds which can block all adenosine, mus-
carinic, LPA, cannabinoid or dopamine receptors? Origi-
nally: Are there compounds which can block all adenosine
(muscarinic, LPA, cannabinoid, dopamine) receptors?

False False

21 What should I use to inhibit TRPM3 in cultured cells, and at
what concentration?

False False

22 Find SMILES and InChiKey for alitretinoin True True
23 Is there recommended background reading on endothelin

receptors?
False False

24 Find apelin ligands that are radiolabelled together with their
pKDs.

False True

25 Find natural products ligands, that meet lipinski rule-of-5
and have SMILES

False False

26 What are the affinity values for SLC29 family inhibitors? False False



Appendix D

Detailed Prompt performance on test
set

Table D.1: Test Set Evaluation Results

Test Case NLQ EX PEX
1 What pharmacology data is there for UniProtKB ID

Q8NEC5 and Q96P56?
False True

2 What selective agonists are there for chemokine receptors
family members?

False False

3 Which Lipinski compounds target Coronavirus proteins? False True
4 Find all of the pharmacological agents that are active in

humans but not rats and mice
False False

5 Find all patent references in the Guide that are post-2021? False True
6 What fraction of all targets with clinically approved drugs

are targeted by a drug on the WHO essential medicines list?
False False

7 Which compounds have a role in acute lymphocytic
leukemia?

True True

8 What peptides, that have pharmacology in humans, also have
amino-acid sequence data in the Guide?

False False

9 What should I use to inhibit TLR7 in cultured cells, and at
what concentration?

True True

10 What antibacterial compounds are in the database? False True
11 Which antibodies have clinical trials data in GtoPdb? False True
12 List chemical structures for SARS Cov2 MPro that have

pAct ¿ 7 and order these high to low
False False

13 Find all immune checkpoint ligands False False
14 Which ligands have interaction data in the plasmodium asex-

ual blood stage
True True

15 Find NHRs that have quantitative interaction data? True True
16 Which compounds act as both agonists and antagonists

against GPCRs?
False False

Continued on next page...
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Table D.1 (Continued)
Test Case NLQ EX PEX

17 Which channel blockers act against Ryanodine receptors? False True
18 Find pKi value, above 6, for Ion Channel approved drugs False False
19 Find drugs for which calcitonin receptors are a primary tar-

get?
False False

20 Which compounds, that also have ChEMBL Ligand IDs,
target dopamine receptors?

False True

21 Are there any approved drugs with unclear bioactivity or
molecular mechanisms of action?

False True

22 What potassium channels does GtoPdb have data on? False True
23 What primary references are used to curate Somatostatin

receptor agonists?
False False

24 What are the SMILES and InChI Keys for compounds that
interact with Nicotinic acetylcholine receptors (nACh)?

False False

25 What ligands and structures have pKi values > 8 when inter-
acting with transporter targets?

False False

26 What range of affinity values does α-MSH have for MC3
receptor?

False False

27 What is the average pKi value for natural products compared
to the average pIC50 values?

False False

28 List endogenous activators of Adenyl cyclases, with their
affinities

False False

29 What concentration/s should be used in isolated tissue exper-
iments?

False False

30 Are the compounds active in rats and mice as well as hu-
mans?

False False
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