Top ▲

Nav1.1

Click here for help

Target id: 578

Nomenclature: Nav1.1

Family: Voltage-gated sodium channels (NaV)

Gene and Protein Information Click here for help
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 4 2009 2q24.3 SCN1A sodium voltage-gated channel alpha subunit 1
Mouse 24 4 1998 2 C1.3 Scn1a sodium channel, voltage-gated, type I, alpha
Rat 24 4 2009 3q21 Scn1a sodium voltage-gated channel alpha subunit 1 26-27
Previous and Unofficial Names Click here for help
RI | Brain type-1 | Rat-I | sodium channel, voltage-gated, type I, alpha subunit | sodium channel, voltage gated, type I alpha subunit | sodium channel
Database Links Click here for help
Alphafold
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
Human Protein Atlas
KEGG Gene
OMIM
Orphanet
Pharos
RefSeq Nucleotide
RefSeq Protein
UniProtKB
Wikipedia
Associated Proteins Click here for help
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
β1 1,34,36
β2 34,50
Other Associated Proteins
Name References
Not determined
Associated Protein Comments
β3 and β4 subunits are also likely to associate singly or in pairs with Nav1.1 but there are limited data on co-expression in heterologous cells and no biochemical data that show association in native tissues.
Functional Characteristics Click here for help
Activation V0.5 = -20 mV. Fast inactivation (τ = 0.7 ms for peak sodium current).
Voltage Dependence Click here for help
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -19.0 – -17.0 (median: -18.0) - 34 Xenopus laevis oocyte Rat
Inactivation  -43.0 – -35.0 (median: -37.0) - 34
Comments  This study included Nav1.1 expressed alone or with β1 or β2.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -33.0 - 8 HEK 293 cells. Human
Inactivation  -72.0 - 8
Comments  Cs fluoride as the major intracellular solute.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -7.5 - 24 HEK 293 cells. Human
Inactivation  -37.6 - 24
Comments  Cs aspartate as the major intracellular solute.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -19.6 – -13.7 - 1 Xenopus laevis oocyte Human
Inactivation  -41.9 – -37.9 - 1
Comments  This study included Nav1.1 expressed with and without β1.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -20.5 0.35 3 Human embryonic kidney cells: cell line tsA-201, a derivative of HEK293 Rat
Inactivation  -56.0 - 3
Comments  N-methyl-D-glucamine as major intracellular solute.

Download all structure-activity data for this target as a CSV file go icon to follow link

Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
batrachotoxin Small molecule or natural product Click here for species-specific activity table Hs Activation - - - -
veratridine Small molecule or natural product Click here for species-specific activity table Hs Activation - - - -
Activator Comments
As Nav1.1 shows close similarity to Nav1.2 in amino acid sequence and in functional properties, it is expected that the activators of Nav1.1 will resemble those of Nav1.2, however there is no published work directly on Nav1.1.
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
GNE-131 Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.3 pIC50 - - 13
pIC50 7.3 (IC50 4.5x10-8 M) [13]
Description: IC50s were generated on a PatchXpress automated voltage-clamp platform, with the membrane potential maintained at a voltage yielding full inactivation of the channel.
relutrigine Small molecule or natural product Click here for species-specific activity table Hs Inhibition 7.0 pIC50 - - 18
pIC50 7.0 (IC50 1.09x10-7 M) [18]
Gating inhibitors Click here for help
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
ATX-II Peptide Click here for species-specific activity table Hs Slows inactivation 8.2 pEC50 - -80.0 30
pEC50 8.2 Inhibitor of fast activation [30]
Holding voltage: -80.0 mV
cangitoxin II Peptide Hs Slows inactivation 6.8 pEC50 - -90.0 52
pEC50 6.8 (EC50 1.65x10-7 M) Inhibits inactivation [52]
Holding voltage: -90.0 mV
Description: hole-cell voltage clamp of human Nav1.1 expressed in human embryonic kidney cell line HEK293.
Bc-III Peptide Click here for species-specific activity table Hs Slows inactivation 6.5 pEC50 - -80.0 30
pEC50 6.5 Inhibitor of fast activation [30]
Holding voltage: -80.0 mV
AFT-II Peptide Click here for species-specific activity table Hs Slows inactivation 6.4 pEC50 - -80.0 30
pEC50 6.4 Inhibitor of fast activation [30]
Holding voltage: -80.0 mV
Gating Inhibitor Comments
As Nav1.1 shows close similarity to Nav1.2 in amino acid sequence and in functional properties, it is expected that gating inhibitors of Nav1.1 will resemble those of Nav1.2, however there is little published work directly on Nav1.1. Other sea anemone toxins have lower affinity for Nav1.1 channels [52].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Value Parameter Concentration range (M) Holding voltage (mV) Reference
tetrodotoxin Small molecule or natural product Click here for species-specific activity table Hs Pore blocker - - 1x10-8 -
Conc range: 1x10-8 M
tetrodotoxin Small molecule or natural product Click here for species-specific activity table Rn Pore blocker 8.0 pKd - -100.0 34
pKd 8.0 [34]
Holding voltage: -100.0 mV
GNE-616 Small molecule or natural product Click here for species-specific activity table Hs Inhibition <6.0 pKd - - 25
pKd <6.0 (Kd >1x10-6 M) [25]
Description: Kd determined in a Dynaflow Manual Patch Clamp experiment.
μ-conotoxin SmIIIA Peptide Click here for species-specific activity table Rn Pore blocker 8.4 pKi - -80.0 49
pKi 8.4 [49]
Holding voltage: -80.0 mV
Description: Two-microelectrode voltage clamp on rat Nav1.1 in Xenopus oocytes
saxitoxin Small molecule or natural product Click here for species-specific activity table Ligand has a PDB structure Hs Pore blocker - - - -
Hm1a Peptide Rn - - - - - 32
[32]
View species-specific channel blocker tables
Channel Blocker Comments
As Nav1.1 shows close similarity to Nav1.2 in amino acid sequence and in functional properties, it is expected that pore blockers of Nav1.1 will resemble those of Nav1.2, however there is little published work directly on Nav1.1. Many other μ-conotoxins block Nav1.1 channels with lower affinity [49].
Tissue Distribution Click here for help
Spinal neurons, primarily cell bodies.
Species:  Human
Technique:  Immunohistochemistry
References:  48
Brain neurons.
Species:  Human
Technique:  In situ hybridisation
References:  47
Cardiac myocytes (sino-atrial node, atrial myocytes and transverse tubules of ventricular myocytes).
Species:  Mouse
Technique:  Immunohistochemistry
References:  22-23
Brain neurons, primarily cell bodies and axon initial segments.
Species:  Rat
Technique:  Immunohistochemistry
References:  28,46,51
Physiological Functions Click here for help
Action potential conduction in transverse tubule of ventricular myocytes. Coupling of cell surface depolarisation to contraction is impaired by tetrodotoxin at concentrations that are selective for Nav1.1 channels versus Nav1.5 channels in ventricular myocytes.
Species:  Mouse
Tissue:  Heart
References:  22-23
Action potential initiation and repetitive firing in central neurons. Sodium currents and action potential firing in GABAergic neurons are impaired in mice lacking Nav1.1 channels.
Species:  Mouse
Tissue:  Brain
References:  19,28,46,51
Physiological Consequences of Altering Gene Expression Click here for help
Impaired sodium currents and action potential firing in GABAergic neurons.
Species:  Mouse
Tissue:  GABAergic neurons.
Technique:  Electrophysiology
References:  6,19,28,51
Phenotypes, Alleles and Disease Models Click here for help Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0005402 abnormal action potential PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
B6.129-Scn1a
MGI:98246  MP:0005402 abnormal action potential PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
B6.129-Scn1a
MGI:98246  MP:0004994 abnormal brain wave pattern PMID: 16921370 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0004008 abnormal GABA-mediated receptor currents PMID: 20100831 
Scn1a+|Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1a+
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0004008 abnormal GABA-mediated receptor currents PMID: 20100831 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0001406 abnormal gait PMID: 17537961 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0003492 abnormal involuntary movement PMID: 17537961 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0002272 abnormal nervous system electrophysiology PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
B6.129-Scn1a
MGI:98246  MP:0002272 abnormal nervous system electrophysiology PMID: 16921370 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0002980 abnormal postural reflex PMID: 16921370 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0001504 abnormal posture PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:98246  MP:0008840 abnormal spike wave discharge PMID: 17881658 
Scn1a+|Scn1atm1Wac|Scn8a+|Scn8amed-jo Scn1atm1Wac/Scn1a+,Scn8amed-jo/Scn8a+
involves: 129 * C57BL/6J * DBA/2WyDi * FVB/NJ
MGI:103169  MGI:98246  MP:0008840 abnormal spike wave discharge PMID: 17881658 
Scn1a+|Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1a+
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0008840 abnormal spike wave discharge PMID: 20100831 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0002690 akinesia PMID: 16921370 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0001393 ataxia PMID: 16921370 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0003996 clonic seizures PMID: 16921370 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0003996 clonic seizures PMID: 20100831 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0000947 convulsive seizures PMID: 16921370 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0001262 decreased body weight PMID: 17537961 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0001262 decreased body weight PMID: 20100831 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0000774 decreased brain size PMID: 17537961 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0002175 decreased brain weight PMID: 17537961 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0009358 environmentally induced seizures PMID: 20100831 
Scn1a+|Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1a+
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0009358 environmentally induced seizures PMID: 20100831 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
B6.129-Scn1a
MGI:98246  MP:0001410 head bobbing PMID: 16921370 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002578 impaired ability to fire action potentials PMID: 20100831 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0001523 impaired righting response PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:98246  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 17881658 
Scn1a+|Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1a+
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 20100831 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0005424 jerky movement PMID: 17537961 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002194 maximal tonic hindlimb extension seizures PMID: 20100831 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0002082 postnatal lethality PMID: 16921370 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0002082 postnatal lethality PMID: 17537961 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:98246  MP:0002082 postnatal lethality PMID: 17881658 
Scn1atm1Wac|Scn8a+|Scn8amed-jo Scn1atm1Wac/Scn1atm1Wac,Scn8amed-jo/Scn8a+
involves: 129 * C57BL/6J * DBA/2WyDi * FVB/NJ
MGI:103169  MGI:98246  MP:0002082 postnatal lethality PMID: 17881658 
Scn1atm1Wac|Tg(Scn1a*)RH9Aesc Scn1atm1Wac/Scn1atm1Wac,Tg(Scn1a*)RH9Aesc/0
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:3851209  MGI:98246  MP:0002082 postnatal lethality PMID: 19409490 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002082 postnatal lethality PMID: 20100831 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
B6.129-Scn1a
MGI:98246  MP:0002083 premature death PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
129-Scn1a
MGI:98246  MP:0002083 premature death PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:98246  MP:0002083 premature death PMID: 16921370 
Scn1a+|Scn1atm1Kzy Scn1atm1Kzy/Scn1a+
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0002083 premature death PMID: 17537961 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:98246  MP:0002083 premature death PMID: 17881658 
Scn1atm1Wac|Tg(Scn1a*)RH9Aesc Scn1atm1Wac/Scn1atm1Wac,Tg(Scn1a*)RH9Aesc/0
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:3851209  MGI:98246  MP:0002083 premature death PMID: 19409490 
Scn1a+|Scn1atm1Wac|Tg(Scn1a*)RH9Aesc Scn1atm1Wac/Scn1a+,Tg(Scn1a*)RH9Aesc/0
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:3851209  MGI:98246  MP:0002083 premature death PMID: 19409490 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:98246  MP:0001921 reduced fertility PMID: 16921370 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0002064 seizures PMID: 16921370 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
B6.129-Scn1a
MGI:98246  MP:0002064 seizures PMID: 16921370 
Scn1a+|Scn1atm1Kzy Scn1atm1Kzy/Scn1a+
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0002064 seizures PMID: 17537961 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0002064 seizures PMID: 17537961 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002064 seizures PMID: 20100831 
Scn1a+|Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1a+
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002064 seizures PMID: 20100831 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0003997 tonic-clonic seizures PMID: 17537961 
Scn1a+|Scn1atm1Wac Scn1atm1Wac/Scn1a+
involves: 129S1/Sv * 129X1/SvJ * FVB/NJ
MGI:98246  MP:0003997 tonic-clonic seizures PMID: 17881658 
Scn1a+|Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1a+
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0003997 tonic-clonic seizures PMID: 20100831 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0002826 tonic seizures PMID: 17537961 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002826 tonic seizures PMID: 20100831 
Scn1a+|Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1a+
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0002826 tonic seizures PMID: 20100831 
Scn1atm1Wac Scn1atm1Wac/Scn1atm1Wac
B6.129-Scn1a
MGI:98246  MP:0000745 tremors PMID: 16921370 
Scn1atm1Kzy Scn1atm1Kzy/Scn1atm1Kzy
involves: 129 * C57BL/6 * SJL
MGI:98246  MP:0001263 weight loss PMID: 17537961 
Scn1atm1.1Aesc Scn1atm1.1Aesc/Scn1atm1.1Aesc
involves: 129X1/SvJ * C57BL/6J * SJL
MGI:98246  MP:0001263 weight loss PMID: 20100831 
Clinically-Relevant Mutations and Pathophysiology Click here for help
Disease:  Dravet syndrome
Synonyms: Epileptic encephalopathy, early infantile, 6; EIEE6 [OMIM: 607208]
Severe myoclonic epilepsy of infancy; SMEI [OMIM: 607208]
Disease Ontology: DOID:0060171
OMIM: 607208
Orphanet: ORPHA33069
References:  4,43
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Frameshift Human S607 29
Frameshift Human P707 29
Frameshift Human R946 14
Frameshift Human D958 35
Frameshift Human A1002 29
Frameshift Human T1082 29
Frameshift Human A1429 29
Frameshift Human N1788 43
Frameshift Human G1880 29
Frameshift Human Q1904 35
Frameshift Human P37fsX91 43
Frameshift Human L1670fsX1678 35,42
Frameshift Human K1846fsX1856 43
Frameshift: Deletion Human G177fsX180 c.530delG 14
Frameshift: Deletion Human S219fsX275 c.657-658delAG Exon 5 7
Frameshift: Deletion Human R501fsX543 G1502del Exon 10 29
Frameshift: Insertion Human K547fsX570 1641insA Exon 10 29
Frameshift: Insertion Human Q732fsX749 c.2196insCACCCTGT 14
Frameshift: Insertion Human K1100fsX1107 c.3299-3300insAA Exon 16 7
Frameshift: Insertion Human F1765fsX1794 c.5292insT 14
In-frame deletion Human F1289del 40
In-frame deletion Human 1807delMFYE c.5419delATGTTCTATGAG 14
Missense Human S103G 14
Missense Human T112I 14
Missense Human G265W 14
Missense Human G343E 14
Missense Human F902C 29
Missense Human R931C 29
Missense Human M960V 14
Missense Human N985I 14
Missense Human L986F 42
Missense Human S1231R 14
Missense Human F1263L 14
Missense Human L1265P 29
Missense Human A1326P 43
Missense Human V1390M 29
Missense Human W1434R 29
Missense Human Q1450R 29
Missense Human R1648C 29
Missense Human G1674R 29
Missense Human A1685D 14
Missense Human W1812G 14
Missense Human F1831S 14
Missense Human E1881D 43
Missense Human T1909I 29
Nonsense Human R222X 42
Nonsense Human I448X 43
Nonsense Human R568X 29
Nonsense Human R712X 29,35
Nonsense Human R865X 29
Nonsense Human W952X 14
Nonsense Human K1027X 29
Nonsense Human W1204X 35
Nonsense Human R1213X 14
Nonsense Human W1271X 29
Nonsense Human W1284X 14
Nonsense Human R1407X 35
Nonsense Human W1408X 14
Nonsense Human S1516X 35
Nonsense Human R1892X 35
Splice site Human IVS4+1G>A 14
Splice site Human IVS18+1G>A 43
Splice site Human IVS22+1G>A Intron 22; DIII S5-S6 pore 7
Splice site Human IVS22-14T>G 43
Disease:  Generalized epilepsy with febrile seizures plus, type 2; GEFSP2
Synonyms: Generalized epilepsy with febrile seizures-plus [Orphanet: ORPHA36387] [Disease Ontology: DOID:0060170]
Disease Ontology: DOID:0060170
OMIM: 604403
Orphanet: ORPHA36387
Drugs: 
References:  4,11,44
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human D188V 44
Missense Human R542Q 31
Missense Human T875M 11
Missense Human I899T 31
Missense Human M967I 31
Missense Human W1204R 10
Missense Human K1249M 31
Missense Human V1353L 44
Missense Human R1648H 11
Missense Human I1656M 44
Disease:  Lennox-Gastaut syndrome
Disease Ontology: DOID:0050561
Orphanet: ORPHA2382
Disease:  Malignant migrating partial seizures of infancy
Orphanet: ORPHA293181
Disease:  Migraine, familial hemiplegic, 3; FHM3
Synonyms: Familial hemiplegic migraine [Disease Ontology: DOID:0060178]
Familial or sporadic hemiplegic migraine [Orphanet: ORPHA569]
Disease Ontology: DOID:0060178
OMIM: 609634
Orphanet: ORPHA569
References:  9
Click column headers to sort
Type Species Amino acid change Nucleotide change Description Reference
Missense Human L263V 2
Missense Human T1174S 5,15
Missense Human Q1489H 20
Missense Human Q1489K 9
Missense Human I1498M 45
Missense Human F1499L 41
Missense Human L1649Q 9
Missense Human F1661L 45
Disease:  Myoclonic-astastic epilepsy
Orphanet: ORPHA1942
Biologically Significant Variants Click here for help
Type:  Splice variant
Species:  Human
Description:  Longer splice variant.
Amino acids:  2009
Protein accession: 
References:  11,21
Type:  Splice variant
Species:  Human
Description:  Shorter splice variant
Amino acids:  1998
Nucleotide accession: 
Protein accession: 
References:  11,21
Type:  Splice variant
Species:  Human
Description:  Alternative splicing of Exon 5. Developmentally regulated in mouse, rat, and human. Physiological effect: Small change in fast inactivation. Correlated with changes in susceptibility to develop febrile seizures in infancy. Pharmacological effect: Changes in effective concentration of antiepileptic drugs for sodium channel block in vitro and in effective dose for treatment of epilepsy in patients.
Nucleotide accession: 
References:  12,16-17,33,37-39
Biologically Significant Variant Comments
Probable in-frame deletion in exon 11 by alternative splicing is responsible for the difference in sequence length [11,21]. Alternative splicing of Exon 5 is developmentally regulated and is correlated with changes in sensitivity of patients to anti-epileptic drugs, with changes in block of Nav1.1 channels by anti-epileptic drugs, and with susceptibility to develop febrile seizures [12,16,33,37-39].

References

Show »

1. Barela AJ, Waddy SP, Lickfett JG, Hunter J, Anido A, Helmers SL, Goldin AL, Escayg A. (2006) An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J Neurosci, 26 (10): 2714-23. [PMID:16525050]

2. Barros J, Ferreira A, Brandão AF, Lemos C, Correia F, Damásio J, Tuna A, Sequeiros J, Coutinho P, Alonso I et al.. (2014) Familial hemiplegic migraine due to L263V SCN1A mutation: discordance for epilepsy between two kindreds from Douro Valley. Cephalalgia, 34 (12): 1015-20. [PMID:24646837]

3. Bechi G, Scalmani P, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M. (2012) Pure haploinsufficiency for Dravet syndrome Na(V)1.1 (SCN1A) sodium channel truncating mutations. Epilepsia, 53 (1): 87-100. [PMID:22150645]

4. Catterall WA. (2014) Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol, 54: 317-38. [PMID:24392695]

5. Cestèle S, Labate A, Rusconi R, Tarantino P, Mumoli L, Franceschetti S, Annesi G, Mantegazza M, Gambardella A. (2013) Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine. Epilepsia, 54 (5): 927-35. [PMID:23398611]

6. Cheah CS, Yu FH, Westenbroek RE, Kalume FK, Oakley JC, Potter GB, Rubenstein JL, Catterall WA. (2012) Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proc Natl Acad Sci USA, 109 (36): 14646-51. [PMID:22908258]

7. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet, 68 (6): 1327-32. [PMID:11359211]

8. Clare JJ, Tate SN, Nobbs M, Romanos MA. (2000) Voltage-gated sodium channels as therapeutic targets. Drug Discov Today, 5 (11): 506-520. [PMID:11084387]

9. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M et al.. (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet, 366 (9483): 371-7. [PMID:16054936]

10. Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH. (2001) A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. Am J Hum Genet, 68 (4): 866-73. [PMID:11254445]

11. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, An-Gourfinkel I, Brice A, LeGuern E, Moulard B, Chaigne D, Buresi C, Malafosse A. (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet, 24 (4): 343-5. [PMID:10742094]

12. Fletcher EV, Kullmann DM, Schorge S. (2011) Alternative splicing modulates inactivation of type 1 voltage-gated sodium channels by toggling an amino acid in the first S3-S4 linker. J Biol Chem, 286 (42): 36700-8. [PMID:21890636]

13. Focken T, Chowdhury S, Zenova A, Grimwood ME, Chabot C, Sheng T, Hemeon I, Decker SM, Wilson M, Bichler P et al.. (2018) Design of Conformationally Constrained Acyl Sulfonamide Isosteres: Identification of N-([1,2,4]Triazolo[4,3- a]pyridin-3-yl)methane-sulfonamides as Potent and Selective hNaV1.7 Inhibitors for the Treatment of Pain. J Med Chem, 61 (11): 4810-4831. [PMID:29737846]

14. Fujiwara T, Sugawara T, Mazaki-Miyazaki E, Takahashi Y, Fukushima K, Watanabe M, Hara K, Morikawa T, Yagi K, Yamakawa K et al.. (2003) Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain, 126 (Pt 3): 531-46. [PMID:12566275]

15. Gargus JJ, Tournay A. (2007) Novel mutation confirms seizure locus SCN1A is also familial hemiplegic migraine locus FHM3. Pediatr Neurol, 37 (6): 407-10. [PMID:18021921]

16. Gazina EV, Richards KL, Mokhtar MB, Thomas EA, Reid CA, Petrou S. (2010) Differential expression of exon 5 splice variants of sodium channel alpha subunit mRNAs in the developing mouse brain. Neuroscience, 166 (1): 195-200. [PMID:20006674]

17. Heinzen EL, Yoon W, Tate SK, Sen A, Wood NW, Sisodiya SM, Goldstein DB. (2007) Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A. Am J Hum Genet, 80 (5): 876-83. [PMID:17436242]

18. Kahlig KM, Scott L, Hatch RJ, Griffin A, Martinez Botella G, Hughes ZA, Wittmann M. (2022) The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia, 63 (3): 697-708. [PMID:35037706]

19. Kalume F, Yu FH, Westenbroek RE, Scheuer T, Catterall WA. (2007) Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J Neurosci, 27 (41): 11065-74. [PMID:17928448]

20. Le Fort D, Safran AB, Picard F, Bouchardy I, Morris MA. (2004) Elicited repetitive daily blindness: a new familial disorder related to migraine and epilepsy. Neurology, 63 (2): 348-50. [PMID:15277634]

21. Lossin C, Wang DW, Rhodes TH, Vanoye CG, George Jr AL. (2002) Molecular basis of an inherited epilepsy. Neuron, 34 (6): 877-84. [PMID:12086636]

22. Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA. (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci USA, 99 (6): 4073-8. [PMID:11891345]

23. Maier SK, Westenbroek RE, Yamanushi TT, Dobrzynski H, Boyett MR, Catterall WA, Scheuer T. (2003) An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci USA, 100 (6): 3507-12. [PMID:12631690]

24. Mantegazza M, Yu FH, Powell AJ, Clare JJ, Catterall WA, Scheuer T. (2005) Molecular determinants for modulation of persistent sodium current by G-protein betagamma subunits. J Neurosci, 25 (13): 3341-9. [PMID:15800189]

25. McKerrall SJ, Nguyen T, Lai KW, Bergeron P, Deng L, DiPasquale A, Chang JH, Chen J, Chernov-Rogan T, Hackos DH et al.. (2019) Structure- and Ligand-Based Discovery of Chromane Arylsulfonamide Nav1.7 Inhibitors for the Treatment of Chronic Pain. J Med Chem, 62 (8): 4091-4109. [PMID:30943032]

26. Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature, 320 (6058): 188-92. [PMID:3754035]

27. Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, Numa S. (1986) Expression of functional sodium channels from cloned cDNA. Nature, 322 (6082): 826-8. [PMID:2427955]

28. Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, Takeuchi T, Itohara S, Yanagawa Y, Obata K et al.. (2007) Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci, 27 (22): 5903-14. [PMID:17537961]

29. Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K. (2002) Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem Biophys Res Commun, 295 (1): 17-23. [PMID:12083760]

30. Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC, Clare JJ, Wanke E. (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J Biol Chem, 279 (32): 33323-35. [PMID:15169781]

31. Orrico A, Galli L, Grosso S, Buoni S, Pianigiani R, Balestri P, Sorrentino V. (2009) Mutational analysis of the SCN1A, SCN1B and GABRG2 genes in 150 Italian patients with idiopathic childhood epilepsies. Clin Genet, 75 (6): 579-81. [PMID:19522081]

32. Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, Castro J, Garcia-Caraballo S, Grundy L, Rychkov GY et al.. (2016) Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 534 (7608): 494-9. [PMID:27281198]

33. Schlachter K, Gruber-Sedlmayr U, Stogmann E, Lausecker M, Hotzy C, Balzar J, Schuh E, Baumgartner C, Mueller JC, Illig T et al.. (2009) A splice site variant in the sodium channel gene SCN1A confers risk of febrile seizures. Neurology, 72 (11): 974-8. [PMID:19289736]

34. Smith RD, Goldin AL. (1998) Functional analysis of the rat I sodium channel in xenopus oocytes. J Neurosci, 18 (3): 811-20. [PMID:9437003]

35. Sugawara T, Mazaki-Miyazaki E, Fukushima K, Shimomura J, Fujiwara T, Hamano S, Inoue Y, Yamakawa K. (2002) Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology, 58 (7): 1122-4. [PMID:11940708]

36. Sutkowski EM, Catterall WA. (1990) Beta 1 subunits of sodium channels. Studies with subunit-specific antibodies. J Biol Chem, 265 (21): 12393-9. [PMID:2165060]

37. Tate SK, Depondt C, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N, Thom M, Sen A, Shorvon SD, Sander JW et al.. (2005) Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci USA, 102 (15): 5507-12. [PMID:15805193]

38. Tate SK, Singh R, Hung CC, Tai JJ, Depondt C, Cavalleri GL, Sisodiya SM, Goldstein DB, Liou HH. (2006) A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet Genomics, 16 (10): 721-6. [PMID:17001291]

39. Thompson CH, Kahlig KM, George Jr AL. (2011) SCN1A splice variants exhibit divergent sensitivity to commonly used antiepileptic drugs. Epilepsia, 52 (5): 1000-9. [PMID:21453355]

40. Thompson CH, Porter JC, Kahlig KM, Daniels MA, George Jr AL. (2012) Nontruncating SCN1A mutations associated with severe myoclonic epilepsy of infancy impair cell surface expression. J Biol Chem, 287 (50): 42001-8. [PMID:23086956]

41. Vahedi K, Depienne C, Le Fort D, Riant F, Chaine P, Trouillard O, Gaudric A, Morris MA, Leguern E, Tournier-Lasserve E et al.. (2009) Elicited repetitive daily blindness: a new phenotype associated with hemiplegic migraine and SCN1A mutations. Neurology, 72 (13): 1178-83. [PMID:19332696]

42. Veggiotti P, Cardinali S, Montalenti E, Gatti A, Lanzi G. (2001) Generalized epilepsy with febrile seizures plus and severe myoclonic epilepsy in infancy: a case report of two Italian families. Epileptic Disord, 3 (1): 29-32. [PMID:11313220]

43. Wallace RH, Hodgson BL, Grinton BE, Gardiner RM, Robinson R, Rodriguez-Casero V, Sadleir L, Morgan J, Harkin LA, Dibbens LM et al.. (2003) Sodium channel alpha1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology, 61 (6): 765-9. [PMID:14504318]

44. Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, Desai RR, Lerman-Sagie T, Lev D, Mazarib A, Brand N et al.. (2001) Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet, 68 (4): 859-65. [PMID:11254444]

45. Weller CM, Pelzer N, de Vries B, López MA, De Fàbregues O, Pascual J, Arroyo MA, Koelewijn SC, Stam AH, Haan J et al.. (2014) Two novel SCN1A mutations identified in families with familial hemiplegic migraine. Cephalalgia, 34 (13): 1062-9. [PMID:24707016]

46. Westenbroek RE, Merrick DK, Catterall WA. (1989) Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron, 3 (6): 695-704. [PMID:2561976]

47. Whitaker WR, Clare JJ, Powell AJ, Chen YH, Faull RL, Emson PC. (2000) Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol, 422 (1): 123-39. [PMID:10842222]

48. Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ. (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res, 88 (1-2): 37-53. [PMID:11295230]

49. Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang MM. (2011) μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci USA, 108 (25): 10302-7. [PMID:21652775]

50. Wollner DA, Messner DJ, Catterall WA. (1987) Beta 2 subunits of sodium channels from vertebrate brain. Studies with subunit-specific antibodies. J Biol Chem, 262 (30): 14709-15. [PMID:2444590]

51. Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA. (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci, 9 (9): 1142-9. [PMID:16921370]

52. Zaharenko AJ, Schiavon E, Ferreira Jr WA, Lecchi M, de Freitas JC, Richardson M, Wanke E. (2012) Characterization of selectivity and pharmacophores of type 1 sea anemone toxins by screening seven Na(v) sodium channel isoforms. Peptides, 34 (1): 158-67. [PMID:21802465]

Contributors

Show »

How to cite this page